期刊文献+

轴向磁场对电弧离子镀TiN薄膜组织结构及力学性能的影响 被引量:4

Effects of Axial Magnetic Field on Microstructure and Mechanical Properties of TiN Films Deposited by Arc Ion Plating
下载PDF
导出
摘要 为了研究轴向磁场对薄膜结构及力学性能的影响规律,采用电弧离子镀方法在高速钢基体上沉积了TiN薄膜,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、轮廓仪和纳米压痕仪考察了外加轴向磁场对薄膜化学成分、组织结构、硬度及弹性模量的影响。结果表明:外加轴向磁场对TiN薄膜的组织结构及力学性能有明显影响。磁场强度越高,薄膜表面颗粒及溅射坑越大,薄膜表面粗糙度增大;薄膜中N含量随着磁场强度增加而增大,而Ti含量则显示出相反的趋势;磁场对薄膜择优取向有明显影响,随着磁场强度增加,薄膜(111)取向增强,而后逐渐转变为(220)择优;薄膜硬度和弹性模量随着磁场强度增加先增加而后降低,在磁场强度为50Gs时分别达到最大值28.4GPa与415.4GPa。 In order to investigate the effects of an axial magnetic field on film structure and properties, TiN films were deposited on high-speed-steel (HSS) substrates by arc ion plating. The effects of the intensity of magnetic field on the chemical composition, microstructure, hardness and elastic modulus was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface profiler and nanoindentor, respectively. The results show that: the axial magnetic field significantly affects the chemical composition, microstrueture and mechanical properties of deposited TiN films. The higher the intensity of the magnetic field is, the bigger are the size of macroparticles, sputtering holes and surface roughness. The content of N in the TiN films increasing with the intensity of magnetic field and the content of Ti shows a reverse trend. The intensity of magnetic field puts much effects on the preferred orientation of the TiN films. With the increase of the intensity of magnetic field, the highly preferred orientation (111) is enhanced and then changes into preferred orientation (220). The hardness and elastic modulus of the films first increase and then decrease with the increase of the intensity of magnetic field. The maximum hardness is 28.4 GPa and the elastic modulus is 415.4 GPa, which obtained at the intensity of magnetic field is 50 Gs.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2015年第1期56-61,共6页 China Surface Engineering
基金 国家自然科学基金(51171197)
关键词 电弧离子镀 轴向磁场 TIN 硬度 arc ion plating axial magnetic field TiN hardness
  • 相关文献

参考文献22

  • 1Vyskocil J, Musil J. Arc evaporation of hard coatings: process and film properties [J]. Surface &Coatings Tech- nology, 1990, 43-44(1): 299-311.
  • 2Boxman R L, Zhitomirsky V N. Vacuum arc deposition de- vices [J]. Review of Scientific Instruments, 2006, 77(2) 021101-021101-15.
  • 3Boxman R L, Goldsmith S. Macroparticle contamination in cathodic arc coatings: generation, transport and control [J]. Surface & Coatings Technology, 1992, 52 (1) : 39 -50.
  • 4Takikawa H, Tanoue H. Review of cathodic arc deposition for preparing droplet-free thin films [J]. IEEE Transac- tions on Plasma Science, 2007, 35(4): 992-997.
  • 5Zhao Y H, Lin G Q, Xiao J Q, et al. Synthesis of titanium ni tride thin films deposited by a new shielded arc ion plating [J]. Applied Surface Science, 2011, 257(13): 5694-7.
  • 6Martin P J, Bendavid A. The filtered arc process and mate- rials deposition [J]. Surface & Coatings Technology, 2001, 142-144: 7-10.
  • 7Aksenov I I, Belous V A, Padalka V G, et al. Transport of plasma streams in a curvilinear plasma- optics system [J]. Journal of Plasma Physics, 1978, 4: 425-428.
  • 8Sanders D M, Anders A. Review of cathodic arc deposition technology at the start of the new millennium [J]. Surface Coatings Technology, 2000, 133-134: 78-90.
  • 9Yoon J S, Han J G. The ion current density and spectro- scopic study in a straight magnetic filtering arc deposition system [J]. Surface& Coatings Technology, 1997, 94- 95: 201-206.
  • 10Schneider J M, Anders A, Yushkov Yu G. Magnetic-field- dependent plasma composition of a pulsed aluminum arc in an oxygen ambient [J]. Applied Physics Letters, 2001, 78:150 -152.

同被引文献93

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部