期刊文献+

基于布尔语义的Gentzen推导模型

Gentzen Deduction Model Based on Boolean Logic Semantics
下载PDF
导出
摘要 布尔模型是信息检索系统的一种基础模型。给出了命题逻辑和布尔代数间的一种新的对应关系,其中布尔代数中的不等式对应Gentzen系统中的矢列式,使得当一个不等式在任意布尔代数中为真,当且仅当它所对应的矢列式是可证的。并且使得在信息检索中,针对信息的推理可以有效地转为偏序集上的运算。讨论的命题逻辑语言的运算符为、ù、ú;并且定义了项(a|t|t1ùt2|t1út2其中a是一个元素)来替代原先的公式和表示布尔代数中的元素。此外,定义了以布尔代数为论域的赋值v,将命题逻辑中的项赋值为布尔代数中的元素,并且如果tΔΓt vtΔΔt v,则矢列式ΓT D为真。最后给出了Gentzen系统下的可靠性和完备性定理的证明。 Deduction systems are important arts of searching technology. This paper gives a new correspondence between the propositional logic and Boolean algebra, where an inequation is corresponding to a Gentzen sequent, so that the inequation is true in every Boolean algebra if and only if the Gentzen sequent is provable. In information retrieval, the information inference can effectively turn into the operation on poset. Precisely, the logical language for the propositional logic contains operators , ∧, ∨; the terms instead of formulas are defined (a|t|t1∧ t2|t1∨ t2, where a is an element) and used to represent elements in Boolean algebra. This paper defines an assignment v using Boolean algebra as its domain, and assigns the terms to be the element in Boolean algebra. The sequence Г=△ is satisfied if ∩t∈Гtv≤∪t∈△tv.Finally, this paper gives a Gentzen system to prove the soundness and completeness theorem.
作者 陈博 眭跃飞
出处 《计算机科学与探索》 CSCD 北大核心 2015年第2期221-226,共6页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金~~
关键词 布尔代数 命题逻辑 不等式 完备性 Boolean algebra proposition logic inequation completeness
  • 相关文献

参考文献15

  • 1Barwise J. An introduction to first-order logic[J]. Studies inLogic and the Foundations of Mathematics, 1977, 90: 5-46.
  • 2Barwise J, Etchemendy J, Allwein G, et al. Language, proof and logic[M]. [S.1.]: CSLI Publications, 2000.
  • 3Givant S R, Halmos P R. Introduction to Boolean algebras[M]. Berlin: Springer, 2008.
  • 4Hilbert D, Ackermann W. Principles of mathematical logic[M]. Providence, USA: American Mathematical Society, 1950.
  • 5Ebbinghaus H D. Mathematical logic[M]. Berlin: Springer, 1994.
  • 6Li W. Mathematical logic[M]. Basel, Switzerland: Birkhauser, 2010.
  • 7Birkhoff G, Birkhoff G, Birkhoff G, et al. Lattice theory[M]. New York, USA: American Mathematical Society, 1948.
  • 8Hodges W. Classical logic I: first order logic[M]. [S.1.]: Black- well, 2001.
  • 9Takeuti G. Proof theory[M]. Chelmsford, MA, USA: Courier Dover Publications, 2013.
  • 10The description logic handbook: theory, implementation, and applications[M]. Cambridge, UK: Cambridge University Press, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部