摘要
针对传统主动前轮转向(AFS)系统存在的问题,阐述了新近被提出的主动前轮独立转向(AIFS)系统结构和工作原理,建立了AIFS系统多体动力学模型,研究了AIFS系统的安装对悬架性能的影响;在MATLAB/Simulink中建立了14自由度整车数学模型,设计了AIFS滑模控制器及附加转角分配模块,在阶跃、正弦等转向工况下,仿真计算了大侧向加速度工况下AIFS的控制效果。结果表明:AIFS系统的安装增加了外侧车轮滑磨;高速转弯时,AIFS系统较AFS系统可以更好地跟踪理想横摆角速度和理想运动轨迹,产生更大的转弯通过加速度,保证内外侧轮胎均在侧向力饱和之前区域工作,使左右轮胎工作负荷趋于相等,实现了"能力越大的轮胎贡献越大"的控制目标,提高了车辆极限转弯时的侧向稳定性。
The shortcomings of AFS system were indicated firstly,and then the structure and principles of the AIFS system proposed in recent years were introduced.A multi-body dynamics model of front suspension equipped with AIFS system was established to study the change of the steering geometry impact on vehicle suspension kinematics characteristics.A sliding mode control theory was employed to develop the AIFS controller and an allocation module was adopted to determine the split between the left and right tire angles.Numerical simulations were conducted to evaluate the proposed control algorithm using a 14-DOF vehicle model performed in MATLAB/Simulink environment.The simulation results show that the installation of AIFS system can aggravate the outer tire wear,however,the AIFS system can achieve a better effectiveness than that of the AFS system in tracking the ideal yaw rate and the ideal trajectory,and can generate a greater lateral acceleration.The inner and outer tires of AIFS are guaranteed to work under the saturation region.Furthermore,the tire workloads tend to be equal so that the outer tire with heavier loads makes more contributions,enhancing the vehicle lateral stability.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2015年第4期560-567,共8页
China Mechanical Engineering
基金
国家杰出青年科学基金资助项目(11225212)
国家自然科学基金资助项目(51275162)
吉林大学汽车仿真与控制国家重点实验室开放基金资助项目(20121109)