期刊文献+

氮磷限制条件下螺旋鱼腥藻伪空胞合成及其浮力特征 被引量:3

Study on Formation of Gas Vesicles of Anabaena spiroides under NitrogenLimited and Phosphorus-Limited Conditions
下载PDF
导出
摘要 伪空胞的合成与破裂是蓝藻浮力调节的主要方式.为研究固氮蓝藻浮力的形成及其调节能力,以螺旋鱼腥藻为代表,在外压作用下将螺旋鱼腥藻伪空胞压破,分别在氮限制〔ρ(TN)为1.65 mg/L,ρ(TP)为1.780 mg/L〕、磷限制〔ρ(TN)为16.50 mg/L,ρ(TP)为0.178 mg/L〕条件下研究伪空胞的合成、藻细胞垂向迁移及漂浮特性.结果表明:螺旋鱼腥藻的伪空胞完全破裂后,在氮限制条件下,藻细胞恢复浮力(漂浮率>50%)需56 h,伪空胞含量恢复到初始水平(2.47×10-7μL/cell)需要72 h;而在磷限制条件下伪空胞含量无法恢复到初始水平;氮限制和磷限制条件下螺旋鱼腥藻最大垂向迁移速率分别为1.4和0.8 m/d,磷限制条件对螺旋鱼腥藻伪空胞的合成及恢复更为不利. Production and dilution of gas vesicles and irreversible collapse of gas vesicles are the main mechanisms of buoyancy regulation of Cyanobacteria.Buoyancy and buoyancy regulation ability are factors forming the competitive advantage of Cyanobacteria,while buoyancy regulation ability is the important factor in bloom formation.The present study investigated gas vesicles,vertical migration rate and buoyancy regulation of Ananbaena sp..The species was pressured and collapsed gas vesicle by external forces and then cultivated in nitrogen-limited(ρ(TN) = 1.65 mg/L,ρ(TP) = 1.780 mg/L) and phosphorus-limited(ρ(TN) = 16.50 mg/L,ρ(TP) = 0.178 mg/L)environments.The results showed that after the gas vesicle collapse,for cells under the condition of nitrogen limitation,restoration of buoyancy required 56 h,and gas vesicle restoration to the initial state required 72 h.Gas vesicles of Anabaena sp.under phosphoruslimited could not restore to the initial state.The maximum rising rate of the cells under the nitrogen-limited and phosphorus-limited conditions were 1.4 and 0.8 m/d,respectively.
出处 《环境科学研究》 EI CAS CSSCI CSCD 北大核心 2015年第2期228-233,共6页 Research of Environmental Sciences
基金 国家自然科学基金项目(51078341) 国家自然科学基金重点项目(50938007)
关键词 伪空胞合成 迁移速率 漂浮率 gas vesicle formation migration velocity floating percentage
  • 相关文献

参考文献38

  • 1CATHERINEA Q, SUSANNAC W, 1SIDORA E S, et al. A review of current knowledge on toxic benthic freshwater cyanobacteria: ecology, toxin production and risk management [ J ]. Water Research ,2013,47 ( 15 ) :5464-5479.
  • 2PAERL H W, HALL N S, CALANDRINO E S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change [ J ]. Science of the Total Environment, 2011,409(10) :1739-1745.
  • 3CHORUS I,BARTRAM J. Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management [ M ]. London : Spon Press, 1999:5-7.
  • 4KLEMER A R,CULLEN J J, MAGEAU M T, et al. Cyanobacteria buoyancy regulation : the paradoxical lroles of carbon [ J ]. Journal of Phycology, 1996,32 : 47- 53.
  • 5KLEMER A R, FEUILLADE J, FEUILLADE M. Cyanobacterial blooms:carbon and nitrogen limitation have opposite effects on the buoyancy of Oscillatoria[J]. Science,1982,215:1629-1631.
  • 6FELICITAS P. Distribution, formation and regulation of gas vesicles [ J ]. Nature Reviews : Microbiology ,2012,10:705-715.
  • 7KINSMAN R, IBELINGS B W,WALSBY A E. Gas vesicle collapse by turgor pressure and its role in buoyancy regulation by Anabaena flosaquae[ J ]. The Journal of General and Applied Microbiology,1991,137:1171-1178.
  • 8BROOKES J D, GEORGE G G. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen,phosphorus and light [ J]. Journal of Plankton Research ,2001,23 ( 12 ) : 1399-1411.
  • 9WALSBY A E. Gas vesicle [ J ]. Microbiological Reviews, 1994,58 (1) :94-144.
  • 10WALSBY A E. Structure and fuction of gas vacuoles [ J ]. Bacteriological Reviews, 1972,36 ( 1 ) : 1-32.

二级参考文献20

  • 1储昭升,金相灿,杨波,庞燕,胡小贞,阎峰,曾清如.不同群体形态蓝藻的气囊与光的相互作用研究[J].环境科学学报,2006,26(11):1909-1913. 被引量:10
  • 2YANG M, YU J W, LI Z L, et al. Tailau Lake not to blame for Wuxi's woes[ J ]. Science ,2008,11 : 158.
  • 3HOEGER S J,SCHMID D, BLOM J F, et al. Analytical and functional characterization of microcystlns [ Asp3 ] MC-RR and [ Asp3 , Dhb7 ] MC-RR: consequences for risk assessment [ J ]. Environ Sci Techno1,2007 ,41:2609-2616.
  • 4REYNOLDS C S, WALSBY A E. Water-blooms [ J ]. Biological Reviews, 1975,50:437-481.
  • 5BONNET M P, POULIN M. Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance[ J]. Ecological Modelling,2002,156:93-112.
  • 6SMITH V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton ~ J ]. Science, 1983, 221:669-671.
  • 7ROBARTS R D, ZOHARY T. Temperature effects phytosynthetie capacity, respiration, and growth rates of bloom- forming cyanobacteria [ J]. N Z J Marine and Freshwater Res, 1987,21:391-399.
  • 8SHAPIRO J. Current beliefs regarding dominance by bluegreens: the case for the importance of CO2 and pH[ J ]. IVTLAP, 1990, 24:38-54.
  • 9FULTON R S, PEARL H W. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa ) blooms [ J ]. Limnology and Oceanography, 1987,32 ( 3 ) :634-644.
  • 10KONOPKA A. Buoyancy regulation and vertical migration by Oscillatoria rubescens in Crooked Lake, Indiana [ J ]. British Phycological Journal, 1982,17:27-442.

共引文献21

同被引文献54

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部