期刊文献+

相机位姿估计的加速正交迭代算法 被引量:37

Accelerative Orthogonal Iteration Algorithm for Camera Pose Estimation
原文传递
导出
摘要 面对需要实时计算的相机位姿估计问题,针对经典的广泛应用的正交迭代算法,提出了一种加速正交迭代算法。其关键思想是将每一次迭代过程规整化,从而提炼出每一次迭代的重复计算,若将此重复计算在迭代开始前提前计算,则可以大幅度的减少迭代过程中的计算量,使得每一次迭代的计算复杂度从O(n)降低为O(1)。因此,可以在更短的时间内迭代更多的次数,从而获得更高的精度。进行了对比实验,结果显示本加速算法计算精度更高,速度更快。并通过实验提出了选择稳健n点透视(RPn P)计算初值,再使用加速正交迭代算法进行迭代运算的方法,在控制点不多的情况下,是一种精度接近最大似然估计,计算速度最快的算法。 An accelerative orthogonal iteration algorithm about the classical and wildly used orthogonal iteration algorithm for camera pose estimation is proposed for real time computation. The key idea is to integrate the steps in each iteration. The repetitive computation in each iteration can be abstracted and done before iteration. The computational complexity of each iteration is reduced from O(n) to O(1). So that, more iteration can be done in short time, and the accuracy is improved as well. The contrastive simulation and real data experiments show the efficiency and accuracy of the accelerative algorithm. Experimentally, the accelerative algorithm with the robust perspective n point(RPn P) initialization has nearly the same accuracy as maximum likelihood estimation(MLE), and is the fastest algorithm when there are few control points.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第1期258-265,共8页 Acta Optica Sinica
基金 国家自然科学基金(11072263 11332012)
关键词 机器视觉 相机位姿估计 加速正交迭代 计算复杂度 最大似然估计 machine vision camera pose estimation accelerative orthogonal iteration computational complexity maximum likelihood estimation
  • 相关文献

参考文献21

  • 1R Hartley, A Zisserman. Multiple View Geometry in Computer Vision [M]. Cambridge University Press, Second Edition, 2004.
  • 2J Mcglone, E Mikhail, J Bethel. Manual of Photogrammetry [M]. American Society fbr Photogrammetry and Remote Sensing, fifth edition, 2004.
  • 3G N Desouza, A C Kak. Vision for mobil e robot navigation: A survey [J]. IEEE Transations on Pattern Analysis aod Machine Intelligence, 2002, 24(2): 237-267.
  • 4R Azuma, Y Baillot, R Behringer, et al: Recent advances in augmented reality [J]. IEEE Computer Graphics and Applications, 2001,21 (6): 34-47.
  • 5L Kneip, D Scaramuzza, R Siegwart. A novel parametrization of the perspective-three-point problem t]r a direct computation of absolute camera position and orientation [C]. Tbe 24th IEEE Conference on Computer Vision and Pattern Recogoition, 2011. 2969- 2976.
  • 6L Quan, Z Lan. Linear N-point camera pose determination [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 1999, 21(8): 774-780.
  • 7P D Fiore. Efficient linear solution of exterior m'ientation [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2001, 23(2): 140-148.
  • 8A Ansar, K Daniilidis. Linear pose estimation from points or lines [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2003, 25(5): 578-589.
  • 9V Lepetit, F M Noguer, P Fua. EPnP: An accurate O(n) solution to the PnP problem [J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
  • 10S Q Li, C Xu, M Xie. A robust O(n) solution to the perspective-n-point problem [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1444-1450.

二级参考文献15

  • 1曹喜滨,张世杰.航天器交会对接位姿视觉测量迭代算法[J].哈尔滨工业大学学报,2005,37(8):1123-1126. 被引量:28
  • 2朱仁璋,林彦,张磊.航天器交会计算机视觉系统测距求解新算法[J].北京航空航天大学学报,2006,32(7):764-768. 被引量:14
  • 3张志勇,张靖,朱大勇.一种基于视觉成像的快速收敛的位姿测量算法及实验研究[J].航空学报,2007,28(4):943-947. 被引量:24
  • 4M. Fischler, R. C. Bolles. Random sample consensus: A paradigm for model fitting and automatic cartography[J]. Comm. ACM, 1981, 6(24): 381-395
  • 5D. G. Lowe. Fitting parameterized three-dimensional models to images [ J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(5): 441-450
  • 6C. P. Lu, G. Hager, E. Mjolsness. Fast and globally convergent pose estimation from video images[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(5) : 610-622
  • 7Adnan Ansar, Kostas Daniilidis. Linear pose estimation from points or lines[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, 25(5) : 578-589
  • 8Ying Kin Yu, Kin Hong Wong, Michael Ming Yuen Chang. Pose estimation for augmented reality applications using genetic algorithm[J]. IEEE Trans. on System, Man, and Cybernetics, 2005, 36(6): 1295-1301
  • 9Gerald Schweighofer, Axel Pinz. Robust pose estimation from a planar target[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2024-2030
  • 10Mario L. Fravolini, Lorenzo Pollini, Brian Stolarik. A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs[C]. Proceedings of the 2006 Conference on Control and Automation, Mediterranean, June 2006. 1-6

共引文献23

同被引文献222

引证文献37

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部