期刊文献+

Approximation by the Modified q-Baskakov-Szsz Operators 被引量:1

Approximation by the Modified q-Baskakov-Szsz Operators
下载PDF
导出
摘要 In this paper we propose the q analogues of modified Baskakov-Sz^sz op- erators. We estimate the moments and established direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators are also obtained. In this paper we propose the q analogues of modified Baskakov-Sz^sz op- erators. We estimate the moments and established direct results in term of modulus of continuity. An estimate for the rate of convergence and weighted approximation properties of the q operators are also obtained.
出处 《Analysis in Theory and Applications》 2014年第3期281-289,共9页 分析理论与应用(英文刊)
关键词 q-analogues Baskakov-Szasz operator modulus of continuity weighted approximation q-analogues, Baskakov-Szasz operator, modulus of continuity, weighted approximation
  • 相关文献

参考文献17

  • 1A. Aral, A generalization of Szfisz-Mirakian operators based on the q-integer, Math. Comput. Model., 47 (2008), 1052-1062.
  • 2A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca., 61 (2011), 619-634.
  • 3O. Doru and O. Duman, Statistical approximation of Meyer-K6nig and Zeller operators based on the q-integer, Publ. Math. Debrecen., 68 (2006), 199-214.
  • 4R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
  • 5A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki, 20(5) (1976), 781-786; Math. Notes, 20(5-6) (1976), 996-998 (English Translation).
  • 6G. Gasper and M. Rahman, Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, Vol 35, Cambridge University Press, Cambridge, UK, 1990.
  • 7V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., 197 (2008), 172-178.
  • 8V. Gupta, A note on q-Baskakov-Szsz operators, Lobachevskii J. Math., 31 (2010), 359-366.
  • 9V. G. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
  • 10T. H. Koornwinder, q-Special functions, a tutorial, in: M. Gerstenhaber and J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, in: Contemp. Math, Vol. 134, Amen Math. Soc., 1992.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部