期刊文献+

基于腔QED的量子纠缠态的制备及应用 被引量:1

Preparation and Application of Quantum Entangled State Based on Cavity QED
下载PDF
导出
摘要 量子纠缠态是一种重要而有用的物理"资源",在量子计算和量子通信中起着极为重要的作用。在量子通信中,信息的处理离不开量子态及其演化。量子纠缠态是各种量子态中最为重要的一种,它用于检验量子力学的基本原理,也是实现量子通信的重要信道,所以纠缠态的制备和操作就显得特别重要。探讨了腔量子电动力学(腔QED)的理论方案,在给出量子纠缠态的定义和度量的基础上、理论上实现了在共振相互作用腔QED中两原子纠缠态和多原子纠缠态的制备,并简要介绍量子纠缠态在量子信息中的应用。 Quantum entangled state is an important and useful physical "resource",it plays a very important role in quantum computation and quantum communication.In the quantum communication,information processing is dependent on the quantum state and its evolution.In the various kinds of quantum states,quantum entangled state is the most important one,it is used to test the fundamental principles of quantum mechanics,and it also takes an important role in quantum communication,so the preparation and operation of quantum entangled state became especially important.This article introduced the theoretical method of cavity quantum electrodynamics(cavity QED) in the first,and then it tells the definition of quantum entangled state and how to measure it,based on it we introduced the specific process of two atoms entangled state and more than two atoms entangled state by the use of cavity QED under resonance interaction.Finally we introduced some important applications of the quantum entangled state in quantum information.
出处 《运城学院学报》 2014年第5期46-54,共9页 Journal of Yuncheng University
基金 山西省高校科技创新项目(2013153)
关键词 量子信息 腔QED 量子纠缠态 纠缠态制备 EPR态 GHZ态 W态 Quantum information Cavity QED Entangled state Preparation of the entangled state EPR state GHZ state W state
  • 相关文献

参考文献6

二级参考文献153

  • 1HE Zheng-Hong XIONG Zu-Hong HU Dong-Mei.Intrinsic Decoherence on Two-Qubit Heisenberg XX Chain[J].Communications in Theoretical Physics,2007,47(5):811-815. 被引量:2
  • 2[1]Pellizzari T,Gardiner S,Cirac J,et al.Decoherence,continuous observation,and quantum computing:a cavity QED model [J].Phys.Rev.Lett.,1995,75:3788-3791.
  • 3[2]Zheng S B,Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J].Phys.Rev.Lett.,2000,85:2392-2395.
  • 4[3]Sleator T,Weinfurter H.Realizable universal quantum logic gates [J].Phys.Rev.Lett.,1995,74:4087-4090.
  • 5[4]Turchette Q A,Hood C J,Lange W,et al.Measurement of conditional phase shifts for quantum logic [J].Phys.Rev.Lett.,1995,75:4710-4713.
  • 6[5]Cirac J I,Zoller P.Quantum computations with cold trapped ions [J].Phys.Rev.Lett.,1995,74:4091-4094.
  • 7[6]Sleane A.The ion trap quantum information processor [J].Appl.Phys.B,1997,64:623.
  • 8[7]Gershenfield N A,Chuang I L.Bulk spin-resonance quantum computation [J].Science,1997,275:350.
  • 9[8]Cory D G,Fahmy A F,Havel T F.Ensemble quantum computing by NMR spectroscopy [J].Proc.Natl.Acad.Sci.U.S.A.,1997,94:1634.
  • 10[9]Jones J A,Mosca M,Hansen R H.Implementation of a quantum search algorithm on a quantum computer [J].Nature (London),1998,393:344-346.

共引文献23

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部