摘要
核函数与参数选择即模型优化是影响支持向量机泛化能力的主要因素。为提高支持向量机的泛化能力,文中在最优保存遗传算法的基础上引入学习算子和主成分分析方法,提出一种新的支持向量机模型优化新算法(简称PCA-SLGA)解决支持向量机分类器模型自动优化问题。仿真实验结果表明,与用于支持向量机模型优化的隐马尔可夫、贪心算法、遗传编程等算法相比,PCA-SLGA算法具有快速收敛性和较强的全局搜索能力。实验进一步表明采用混合算法寻找最优核模型是一种可行途径。
M odel optimization,the choice of kernel functions and its parameters,has a profound impact on the generalization ability of the support vector machine. In this paper,to improve the generalization ability for SVM,a newkernel optimization algorithm( for short PCA- SLGA),based on the elitist of genetic algorithm,which adopts self- learning operator and principle component analysis method,is put forward in order to solve the problem of automatic optimization of VSM classifier model. Compared with the SVM s optimized by hidden M arkov,greedy algorithm,genetic programming,the experimental results showthat PCA- SLGA converge faster and has stronger global search ability than the algorithms mentioned above. The experiments further indicates that using the hybrid algorithm to optimize the kernel is a promising way to find the optimal kernel model.
出处
《计算机技术与发展》
2014年第12期114-117,123,共5页
Computer Technology and Development
基金
国家科技型中小企业技术创新基金(11C26213311798)
浙江省医药卫生科技计划项目(2013KYB242)
浙江省卫生经济学会资助课题
宁波市自然科学基金(2012A610063)
宁波城市职业技术学院科研重点课题(ZZX13035)
关键词
支持向量机
模型选择
主成分分析
自学习
遗传算法
support vector machine
model selection
principle component analysis
self-learning
genetic algorithm