期刊文献+

去除乘性噪声的分数阶变分模型及算法 被引量:1

Fractional-order variation model and algorithm for multiplicative noise removal
原文传递
导出
摘要 目的针对变分方法在去除图像乘性噪声时易产生"阶梯效应"的问题,分析研究了几种经典乘性去噪变分模型的特性和相关性,在此基础上考虑到分数阶微分的频率特性,提出一种用于去除乘性Gamma噪声的分数阶凸变分模型。方法提出的分数阶凸变分模型是经典I-divergence变分模型的分数阶扩展。基于对偶理论,提出一种用于求解该模型的分数阶原始对偶算法。并且基于鞍点理论,分析了确保算法收敛的参数取值范围。结果实验中从频域角度分析并验证了提出的分数阶变分模型较经典的一阶变分模型能够有效缓解"阶梯效应"现象,更好地保持图像的中频纹理和高频边缘信息。同时提出的分数阶原始对偶数值算法能有效收敛,且收敛速度较快。结论本文提出了一种去除图像乘性噪声的分数阶变分模型,该模型可采用一种基于预解式的原始对偶算法求解。实验结果表明,提出的模型能有效改善图像的视觉效果,采用的数值算法能有效快速收敛。 Objective Considering that the variation methods for image muhiplicative noise removal exhibit the staircase effect problem, we analyze the characteristic and correlation of several classical muhiplicative denoising variation models. With the frequency characteristic of the fractional differential considered, a fractional-order convex variation model for mul- tiplieative Gamma noise removal is proposed. Method Our fractional-order convex variation model is the fractional-order generalization of the classical I-divergence variation model. Based on duality theory, a fractional-order primal-dual algo- rithm to solve the model is proposed. The range of the parameter is given according to saddle-point theory to guarantee algo- rithm convergence. Result In terms of frequency domain aspects, the experiments verify that the proposed fractional-order variation model is effective in relaxing the staircase effect and preserving medium-frequency texture information in a cardiac ultrasound image, as well as high-frequency building edges information in the "Cameraman" image compared with the clas- sical first-order variation model. The proposed fractional-order primal-dual algorithm can also effectively converge and ex- hibits a fast convergence speed. Conclusion To produce denoised images with minimal loss of image details, this study proposes a fractional-order variation model for image multiplieative noise removal. Classical variation numerical algorithms need to compute the derivative of a non-differentiable function (i. e. , the fractional-order regulation term), so we refer to a primal-dual algorithm based on a resolvent for an alternative solution. Experiment results indicate that the proposed model can effectively improve the image visual effect, and the adoptive numerical algorithm demonstrates a fast convergence speed.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第12期1751-1758,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61201378 61174145) 辽宁省教育厅科学研究一般项目(L2013448)
关键词 乘性噪声 变分法 分数阶微分 原始对偶算法 鞍点模型 multiplicative noise variation method fractional-order differential pnmal-dual algorithm saddle-point model
  • 相关文献

参考文献13

  • 1Dong Y, Zeng T. A convex variational model for restoring blurred images with muhiplicative noise[ J ]. SIAM Journal on Imaging Sciem.es, 2013, 6(3): 1598-1625.
  • 2Rudin L, Lions P L, Osher S. Multiplicative denoising and de- blurring: theory and algorithms [ M ]. Geometric Level Set Meth- ods in Imaging, Vision, and Graphic.s. New York: Springer 2003 : 103-119.
  • 3Aubert G, Aujol J F. A variational approach to removing nmhi- plicative nnise [ J ]. SIAM Journal on Applied Mathematics, 2008, 68(4) : 925-946.
  • 4Shi J, Osher S. A nonlinear inverse scale space melhod for a convex mahiplicative noise model[ J]. SIAM Journal on Imaging Sciences, 2008, 1 (3) : 294-321.
  • 5Steidl G, Teuber T. Removing muhiplicalive noise by Douglas- Raehford splitting methods[ J]. Journal of Mathematical Imaging and Vision, 2010, 36(2) : 168-184.
  • 6Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging [ J ]. Journal of Mathematical hnaging amt Vision, 2011,40( 1 ) : 120-145.
  • 7Xiao L, Huang L L, Wei Z H. A weberized Iotal variation regu- larization-based image muhiplicative noise removal algorilhm [ J ]. EURASIP Journal on Advances in Signal Processing, 2010, 2: 1-15.
  • 8Zhang J, Wei Z, Xiao L. Adaptive fractional-order multi-scale method for image denoising[ J]. Journal of Mathematical Imaging and Vision, 2012, 43(1 ) : 39-49.
  • 9Chen D, Sun S, Zhang C, et al. Fractional-order TV-12 model for image denoising[ J ]. Cenlral European Journal of Physics, 2013, 11(10): 1414-1422.
  • 10Bai J, Feng X C. Fractional-order anisotropic diffusion for image denoising[ J ]. IEEE Transactions on hnage Processing, 2007, 16(10) : 2492-2502.

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部