期刊文献+

利用线性Bregman迭代的ISAR高分辨成像 被引量:1

High Resolution ISAR Imaging by Linearized Bregman Iteration
下载PDF
导出
摘要 为获得ISAR方位向高分辨成像性能,基于压缩感知理论,提出了一种具有方位向高分辨能力的算法。该算法基于线性Bregman迭代(LBI)实现ISAR方位向高分辨。首先将重构精度高的LBI推广到复数域;然后进行了算法的理论分析,与正交匹配追踪算法对比分析了LBI算法的有效性以及稀疏度和采样率对重构精度的影响,仿真结果表明推广到复数域后的LBI能够有效实现复数稀疏信号的重构,验证了算法的优越性;最后将算法运用于ISAR方位向成像。仿真结果验证了LBI算法可明显提高ISAR方位向分辨率。 In order to achieve high resolution azimuth imaging performance in inverse synthetic aperture radar(ISAR),a new imaging algorithm based on compressive sensing(CS)theory is proposed.High resolu-tion in azimuth is implemented via linearized Bregman iteration(LBI).Firstly,LBI with high reconstruction precision is extended to the complex field,and then the algorithm is analyzed theoretically,the effectiveness of LBI and the influence yielded by sparsity and sampling rate is compared with orthogonal matching pursuit (OMP)algorithm.Results show that the extended LBI can realize effective reconstruction and verify the su-periority of LBI.Finally,the algorithm is applied to ISAR azimuth imaging.Simulation results indicate that the presented algorithm can improve ISAR azimuth resolution.
机构地区 空军预警学院
出处 《雷达科学与技术》 2014年第6期580-584,591,共6页 Radar Science and Technology
基金 军队重点项目(No.XX20131304)
关键词 压缩感知 逆合成孔径雷达 高分辨 线性 Bregman 迭代 compressive sensing(CS) inverse synthetic aperture radar(ISAR) high resolution linearized Bregman iteration(LBI)
  • 相关文献

参考文献10

  • 1DONOHO D L. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52(4) :1289-1306.
  • 2张龙,张磊,邢孟道.一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J].电子与信息学报,2010,32(9):2263-2267. 被引量:18
  • 3李少东,裴文炯,杨军.基于CS的LFM信号脉冲压缩实现算法研究[J].雷达科学与技术,2013,11(3):295-301. 被引量:7
  • 4ZHANG L, XING M D, QIU C W, et al. Achieving Higher Resolution ISAR Imaging with Limited Pulses via Compressed Sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3) :567-571.
  • 5李少东,杨军,马晓岩.基于压缩感知的ISAR高分辨成像算法[J].通信学报,2013,34(9):150-157. 被引量:11
  • 6CANDES E, TAO T. Decoding by Linear Program- ming[J]. IEEE Trans on Information Theory, 2005, 51(12) :4203-4215.
  • 7YIN W, OSHER S, GOLDFARB D, et al. Bregman Iterative Algorithms for ll-Minimization with Applica- tions to Compressed Sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1) :143-168.
  • 8BREGMAN L M. The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming[J]. USSR Computational Mathematics and Mathe- matical Physics , 1967, 7(3):200-217.
  • 9DONOHO D L. De-Noising by Soft Thresholding [J]. IEEE Trans on Information Theory, 1995, 41 (3):613 -627.
  • 10ENDER H G. On Compressive Sensing Applied to Radar[J]. Signal Processing, 2010, 90 (5): 1402- 1414.

二级参考文献17

  • 1王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像[J].电子与信息学报,2006,28(6):982-984. 被引量:14
  • 2Baraniuk R, Steeghs P. Compressive Radar Imaging EC//2007 IEEE Radar Conference, Boston, MA: Es.n., 2007..128 133.
  • 3Lin Yue-guan, Wu Yi tong, Hong Wen, et al. Con> pressive Sensing in Radar ImagingEC // 2009 IET In ternational Radar Conference, Guilin, China: Es. n. 1, 2009 : 1-3.
  • 4Xie Xiaochun, Zhang Yunhua. Fast Compressive Sensing Radar Imaging Based on Smoothed 10 Norm EC2//2nd Asian-Pacific Conference on Synthetic Ap- erture Radar, Xi'an, China: Es. n. 2, 2009:443- 446.
  • 5Jouny I. Compressed Sensing for UWB Radar Target Signature ReconstructionEC ff 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Pro- cessing Education Workshop, Marco Island, FL, United States:Es. n. 1, 2009:714-719.
  • 6Candes E J, Tao T. Decoding by Linear Program- ming E J 1. IEEE Trans on Information Theory, 2005, 51(12) ..4203-4215.
  • 7Mohimani H, Massoud Babaie-Zadeh, Jutten C. A Fast Approach for Overcomplete Sparse Decomposi- tion Based on Smoothed 10 Norm[J]. IEEE Trans on Signal Processing, 2009, 57(1):289-301.
  • 8Donoho D L. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52 (4) 1289-1306.
  • 9LI YaChao XlNG MengDao ZHANG Long BAO Zheng.Detection, parameter estimation and imaging of maneuvering target in wide-band signal[J].Science in China(Series F),2009,52(6):1015-1026. 被引量:4
  • 10刘亚波,李亚超,邢孟道,保铮.基于锥形尺度变换的弱小舰船目标检测[J].电子与信息学报,2009,31(11):2575-2580. 被引量:8

共引文献33

同被引文献6

  • 1肖顺平,魏建功,冯德军,王雪松.ISAR成像包络对齐性能评估[J].国防科技大学学报,2007,29(3):56-60. 被引量:4
  • 2MAKI A, FUKUI K. Ship identification in sequential ISAR imagery[J].Machine Vision and Applications,2004,15(3): 149-155.
  • 3PASTINA D.Rotation motion estimation for high resolu- tion ISAR and hybrid SAR/ISAR target imaging[C]//Pro- ceedings of 2008 IEEE Radar Conference. IEEE,2008:1-6.
  • 4GARREN D A,GOLDSTEIN J S,OBUCHON D R,et al. SAR image formation algorithm with multipath reflectiv- ity estimation[C]//Proceedings of 2004 IEEE Radar Con- ference.IEEE,2004:323-328.
  • 5TOTIR F, RADOI E,QUINQUIS A. Multidimensional su- perresolution ISAR reconstruction techniques in sea-clut- tered environment[C]//Oceans 2005Europe.2005:l-6.
  • 6黄源宝,郑义明,保铮.基于多特显点综合的SAR/ISAR自聚焦[J].西安电子科技大学学报,2001,28(1):105-109. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部