期刊文献+

多相主动轮廓模型的眼底图像杯盘分割 被引量:9

Automatic segmentation of optic disc and cup using multiphase active contour model in fundus images
原文传递
导出
摘要 目的视盘及视杯的检测对于分析眼底图像和视网膜视神经疾病计算机辅助诊断来说十分重要,利用医学眼底图像中视盘和视杯呈现椭圆形状这一特征,提出了椭圆约束下的多相主动轮廓模型,实现视盘视杯的同时精确分割。方法该算法根据视盘视杯在灰度图像中具有不同的区域亮度,建立多相主动轮廓模型,然后将椭圆形约束内嵌于该模型中。通过对该模型的能量泛函进行求解,得到椭圆参数的演化方程。分割时首先设定两条椭圆形初始曲线,根据演化方程,驱动曲线分别向视盘和视杯方向进行移动。当轮廓线到达视盘、视杯边缘时,曲线停止演化。结果在不同医学眼底图像中对算法进行验证,对算法抗噪性、不同初始曲线选取等进行了实验,并与多种算法进行了对比。实验结果表明,本文模型能够同时分割出视盘及视杯,与其他模型的分割结果相比,本文算法的分割结果更加准确。结论本文算法可以精确分割医学眼底图像中的视盘和视杯,该算法不需要预处理,具有较强的鲁棒性和抗噪性。 Objective The detection of optic disc and cup is important in fundus image analysis and in the computer-aided diagnosis of optic nerve disease. In this study, an elliptical muhiphase active contour model is proposed based on the oval shape of the optic disc and cup. The proposed algorithm can segment the optic disc and cup simultaneously and exactly. Method First, a muhiphase active contour model is developed based on gray images of the optic disc and cup with differ- ent brightness levels. Afterward, the oval constraints are embedded in the model. The parametric equation of an ellipse can be obtained by finding the solution for the energy function of the model. Two oval initial curves are initially set. The evolution equation drive curves move toward the direction of the optic disc and cup. The curve evolution stops upon reac- hing the object contour border. Result The proposed algorithm is validated through experiments on its anti-noise ability and on the selection of different initial curves using different medical fundus images. The obtained resuhs are compared with those of other algorithms. The experimental results show that unlike other models, the proposed model can simuha- neously segment the optic disc and cup. The approach proposed in this paper can achieve superior image segmentation re- sults. Conclusion A novel image segmentation method is prese/ated in this work. The experimental results show that the method can accurately segment the optic disc and cup. The algorithm is proven to be not pretreatment, robust, and effi- cient.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第11期1604-1612,共9页 Journal of Image and Graphics
基金 沈阳市科技创新专项资金项目(F13-310-4-00)
关键词 眼底图像 杯盘分割 C-V模型 椭圆形约束多相主动轮廓模型 多相水平集函数 fundus image optic disc and cup segmentation C-V model elliptical mu|tiphase active contour model mul-tiphase level set function
  • 相关文献

参考文献20

  • 1l,u S, l.im J H. Automatic optic disc deteelion fr(ml relinal ima- ges by a line operator[J]. IEEE Transaetions on Biomedical En- gineering, 2011, 58( 1 ): 88-94.
  • 2Yu H, Barriga E S, Agurto C, et al. Fast localization and seg- mentation of optic disk in retinal images using directional matched filtering and level sets [ J ]. IEEE Transactions on Infonuadon Technology in Biomedicine, 2012, 16 (4) : 644-657.
  • 3Bock R, Meier J, Nytil L G, et al. Glaucoma risk index: auto- mated glaucoma detection fom color tkJndus images [J]. Medicalimage analysis, 2010, 14(3) : 471-481.
  • 4Joshi G, Sivaswamy J, Krishnadas S R. Optic disk and cup seg- mentation from monocular color retinal images for glaucoma as- sessment [ J]. IEEE Transactions on Medical Imaging, 2011, 30(6) : 1192-1205.
  • 5王玉亮,沈建新,廖文和.基于SIFT特征的眼底图像自动拼接[J].中国图象图形学报,2011,16(4):654-659. 被引量:15
  • 6Cheng J, Liu J, Xu Y, et al. Superpixel classification based op- tic disc and optic cup segmentation for glaucoma screening[ J]. IEEE Transactions on Medical Imaging, 2013, 32 (6): 1019- 1032.
  • 7Yin F, Liu J, Wong D W K, et al. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis [C]//The 25th International Symposium on Computer-Based Medical Systems. New York: IEEE, 2012 : 1-6. Recogni- tion. Berlin Heidelberg: Springer, 2012: 390-399.
  • 8Fond6n I, N6fiez F, Tirado M, et al. Automatic cup-to-disc ratio estimation using active contours and color clustering in fundus im- ages for glaucoma diagnosis [ M ]//Image Analysis and.
  • 9Tan N M, Liu J, Wong D W K, et al. Mixture model-based ap- proach for optic cup segmentation [ C ]// Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2010 : 48174820.
  • 10刘国才,王耀南,全惠敏.基于多层Mumford-Shah向量模型的彩色视乳头图像杯盘重建、分割与度量[J].中国生物医学工程学报,2007,26(5):700-707. 被引量:11

二级参考文献93

  • 1徐亮.识别早期青光眼视神经损害的新概念[J].眼科,2003,12(6):324-326. 被引量:31
  • 2Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376.
  • 3Zitová B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21:977-1000.
  • 4Can A,Stewart C V,Roysam B.Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos,CA:IEEE,1999:286-292.
  • 5Stewart C V,Tsai C L,Roysam B.The dual-bootstrap iterative closest point algorithm with application to retinal image registration[J].IEEE Transactions on Medical Imaging,2003,22(11):1379-1394.
  • 6Choe T E,Cohen I.Registration of multimodal fluorescein images sequence of the retina[C]//Proceedings of IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society,2005:106-113.
  • 7ChoeT E,Cohen I,Lee M,et al.Optimal global mosaic generation from retinal images[C]//Proceedings of the 18th International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society,2006:681-684.
  • 8Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Lindeberg T.Scale-space theory:A basic tool for analysing structures at different scales[J].Journal of Applied Statistics,1994,21 (2):224-270.
  • 10Friedman J H,Bentley J L,Finkel Raphael R A.An algorithm for finding best matches in logarithmic expected time[J].ACM Transactions on Mathematical Software (TOMS),1977,3 (3):209-226.

共引文献57

同被引文献62

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2牛君,李贻斌,宋锐.活动轮廓模型综述[J].杭州电子科技大学学报(自然科学版),2005,25(3):67-70. 被引量:10
  • 3陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 4CHANT F, VESE L A. Active contou without edges [ J]. IEEE Transactions on Image Processing, 2001, 10(?.): 266 -277.
  • 5LI C M, KAO C-Y, GORE J C, et al. Minimization of region-scala- ble fitting energy, for image segmentation [ J] IEEE Transactions on Image Processing, 2008, 17(10) : 1940 - 1949.
  • 6YUAN Y, HE C J. Adaptive active contours without edges [ J]. Mathematical and Computer Modeling, 2012, 55 (5/6) : 1705 - 1721.
  • 7SONG H H. Active contours driven by regularised gradient flux flows for image segmentation [J]. Electronics Letters, 2014, 50( 14): 992 - 994.
  • 8WU Y F, HE C J. A convex variational level set model for image segmentation [J]. Signal Processing, 2015 , 106(C) : 123 - 133.
  • 9FENG C L, ZHANG J X, LIANG R. A method for lung boundary' correction using split bregman method and geometric active contour model [ J]. Computational and Mathematical Methods in Medicine, 2015, 2015: 789485.
  • 10WU Y, MA W P, GONG M G, et al. Novel fuzzy active contour model with kernel metric for image segmentation [ J]. Applied Soft Computing, 2015, 34:301-311.

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部