摘要
对一类变系数时间分数阶延迟微分方程给出了一种有限差分解法,将对时间的一阶导数利用α(0<α<1)阶导数来代替,同时证明了该格式的收敛性与稳定性,数值算例验证该方法有效。
A numerical method was given to solve a time fractional delay differential equation with variable coefficients, which the first order derivative was replaced by a fractional derivative of order α(0&lt;α&lt;1). Furthermore, we also prove the difference scheme is unconditional stable and unconditional convergence. Numerical example shows that the numerical method is a practical method.
出处
《井冈山大学学报(自然科学版)》
2014年第6期1-3,共3页
Journal of Jinggangshan University (Natural Science)
基金
国家自然科学基金项目(11271101)
关键词
变系数
时间分数阶
延迟微分方程
无条件收敛
无条件稳定
variable coefficients
time fractional
delay differential equation
unconditional convergence
unconditional stable