期刊文献+

变系数时间分数阶延迟微分方程的数值解法

NUMERICAL METHOD FOR SOLVING VARIABLE COEFFICIENTS TIME FRACTIONAL DELAY DIFFERENTIAL EQUATION
下载PDF
导出
摘要 对一类变系数时间分数阶延迟微分方程给出了一种有限差分解法,将对时间的一阶导数利用α(0<α<1)阶导数来代替,同时证明了该格式的收敛性与稳定性,数值算例验证该方法有效。 A numerical method was given to solve a time fractional delay differential equation with variable coefficients, which the first order derivative was replaced by a fractional derivative of order α(0&lt;α&lt;1). Furthermore, we also prove the difference scheme is unconditional stable and unconditional convergence. Numerical example shows that the numerical method is a practical method.
出处 《井冈山大学学报(自然科学版)》 2014年第6期1-3,共3页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(11271101)
关键词 变系数 时间分数阶 延迟微分方程 无条件收敛 无条件稳定 variable coefficients time fractional delay differential equation unconditional convergence unconditional stable
  • 相关文献

参考文献5

二级参考文献28

  • 1王培光,葛渭高.ON THE OSCILLATION OF SOLUTIONS OF HYPERBOLIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS[J].Applied Mathematics and Mechanics(English Edition),1999,20(7):47-55. 被引量:12
  • 2王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 3ZHU Shao-hong, ZHAO J. The alternating segment explicit-implicit scheme for the dispersive equation [ J ]. Applied Mathematics Letters, 2001, 14(6) :657 -662.
  • 4ZHANC. Qing-jie, WANG Wen-qia. A four-order alternating segment Crank-Nicolson scheme for the dispersive equation[J]. Computers and Math- ematics with Applications, 2009, 57(2) :283 -289.
  • 5CHEN Chang-ming, LIU F, BURRAGE K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation[ J]. Applied Mathematics and Computation ,2008,198:754 - 769.
  • 6郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 7Miller K S,Ross B.An introduction to the fractional calculus and fractional differential equation[M].New York:Wiley,1993.
  • 8Kibas A A.,Anatoly A.Srivasfava,Theory and Applications of Fractional Differential Equati-ons[C].in: North-Holland Mathematics Studies,Elsevier Science B. V.,Amsterdam,2006.
  • 9Delbosco D,Rodino L.Existence and uniqueness for a nonlinear fractional differential equation[J].J.Math.Anal. Appl.,1996,204:609-625.
  • 10Salem H A H.On the existence of continuous solutions for a singular system of nonlinear fractional differential equations[J].Appl.Math.Comput.,2008,198:445-452.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部