期刊文献+

差错网络的文本分类反馈校正方法 被引量:1

Feedback correction method of text classification based on error network
原文传递
导出
摘要 中文新闻信息分类的类别数量大,难以一次性获取均衡的分类性能。针对这一问题,提出了一种基于差错网络的文本分类反馈校正方法。首先对文本进行一次分类,根据分类结果生成有向差错网络,得到标注类别与真实类别的候选映射规则。然后计算差错网络的类别关联度参数,再对候选映射规则进行筛选,得到标注类别与真实类别的映射规则。最后根据映射规则进行二次分类,实现分类反馈校正。实验表明,差错网络清晰地反映了类别的相关度。通过映射关系进行反馈校正,比普通文本分类的F值提高了6.2%。在NLP&CC2014评测中,基于差错网络的方法平均正确率达到73%,证明了该方法的有效性。 In study of Chinese news texts classification, it' s hard to achieve a balanced performance because the number of categories. In order to solve the problem, this paper puts forward a feedback correction method of text classification based on error network. First, we performed the first level classification, generated the error network and extracted the candidate mapping rules set hetween annotation and real categories. Then we calculated the references of type relationship, extracted the mapping rules set between annotation and real categories by screening the candidate mapping rules. At last, we execu- ted the second classification based on mapping rules set and implemented the feedback correction of classification. Experi- ments showed that the error network reflected the relationship between annotation categories and real categories clearly. It also showed that the method based on feedback correction improved the F measure about 6.3% than traditional method. The average precision achieved at 73% in NLP&CC 2014 by implementing the method, which proved the effectiveness of the method.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第6期790-795,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 重庆市自然科学基金(CSTC2011jj A40002)~~
关键词 差错网络 分类反馈校正 映射规则 error network feedback correction of classification mapping rules
  • 相关文献

参考文献10

二级参考文献118

共引文献60

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部