期刊文献+

基于RF5的红外弱小目标跟踪系统的实时性改进方法

The real-time improvment method for the infrared small dim target's tracking system based on RF5
下载PDF
导出
摘要 利用基于粒子滤波的检测前跟踪算法对红外弱小目标进行检测跟踪时,由于算法的复杂性以及所处理数据量大等原因,使得该系统不能满足实时性的要求。针对这一问题,提出了在RF5框架下实现基于粒子滤波的检测前跟踪算法的改进方案,并成功地在DM642上实现了该算法。实验结果表明,与传统的单线程方式相比,系统的实时性得到了很大提高,可以满足系统实时性的要求。 When the track-before-detect (TBD) algorithm based on particle filtering (PF) is utilized to detect and track the infrared small dim target, the system can not meet the real-time requirement because of complexity of the algorithm and a large amount of data needed to be processed .An improved TBD algorithm based on particle filtering under the frame of RF5 is proposed to solve the problem.Furthermore, the algorithm is successfully implemented on DM642.Simulation results show that the real-time of the system is greatly improved in comparison with the tradi-tional single-thread way, which basically meets the real-time requirement.
出处 《应用科技》 CAS 2014年第5期19-22,共4页 Applied Science and Technology
基金 黑龙江省自然科学基金资助项目(F201407)
关键词 粒子滤波 RF5框架 红外弱小目标 DM642 particle filtering RF5 framework infrared small dim target
  • 相关文献

参考文献4

二级参考文献14

  • 1司群,臧英新,陶友传,罗丹.TMS320DSP算法标准(XDAIS)及参考构架RF5综述[J].舰船电子工程,2006,26(2):27-31. 被引量:8
  • 2Texas Instruments Incorporated. Reference frameworks for eXpress- DSP software: RF5, an extensive, high-density system[EB/OL]. [2008-11-20].http://focus.ti.com.cn/crdlit/an/spra795a/spra795a.pdf.
  • 3李世平.H.264三大开源编码器之评测报告[EB/OL].12008-11-20].http://blog.csdn.net/sunshine 1314/archive/2006/01/10/397895.aspx.
  • 4Texas Instruments Incorporated. TMS320 DSP/BIOS User's Guide [EB/OL].[2008-11-20].http://focus.ti.com/lit/ug/spru423f/spru423 f.pdf.
  • 5Crisan D,Doucet A. A survey of convergence results on particle filtering methods for practitioners[J]. IEEE Transactions on Signal Processing, 2002,50(2): 736-746.
  • 6Dcucet A,Godsil S,Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10 (3) :197-208.
  • 7Belviken E,Acklam P J. Monte Carlo filters for non-linear state estimation[J]. Automation,2001,37(1) : 177-183.
  • 8Fox D. Adapting the sample size in particle filters through KLD sampling[J]. The International Journal of Robotics Research, 2003,22 (12):985-1003.
  • 9Thrun S,Fox D,Burgard W,et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence,2001,128(1-2):99-141.
  • 10Kwok C,Fox D,Meil M. A real-time particle filters[J]. Proceedings of the IEEE, 2004,92(3): 469-484.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部