期刊文献+

一种提高雷达HRRP识别和拒判性能的新方法 被引量:2

A New Method To Improve Radar HRRP automatic Recognition and Rejection Performance
下载PDF
导出
摘要 针对传统雷达HRRP自动目标识别算法中识别率较低和库外样本拒判效果不理想的问题,提出了一种基于数据预处理和子像空间的新识别方法。该方法一方面通过对数据的预处理来消除噪声的影响,另一方面通过建立子像空间进一步提高了库内样本的识别率,并基于假设检验理论引入了拒判门限,用于对库外样本进行拒判。实验表明,该方法不仅在识别率方面优于传统识别算法,且能有效对库外样本进行拒判。 The traditional radar HRRP automatic target recognition algorithm to identify the sample rate is low and rejection of the outside samples is not ideal. This paper propose a new method to identify data preproeessing and child like space-based. On one hand, the method of data preprocessing eliminate the effect of noise, on the other hand, through the establishment of sub-like space, the recognition rate of the inside library of samples is improved, and the introduction of threshold based on hypothesis testing theory improves the rejection performance. Experiments show that this method is not only superior to the traditional algorithm in the recognition rate, and can effectively resist the library outside the sample sentence.
出处 《电子科技》 2014年第12期150-154,共5页 Electronic Science and Technology
关键词 目标识别 一维距离像 子像空间 target recognition HRRP sub-like space
  • 相关文献

参考文献9

  • 1LIU H, MOTODA H. Feature extraction, construetion and se- lection : a data mining perspective [ M ]. Boston, USA : KLuw- er Aeademie Publishers, 1998.
  • 2GUYON G S, NIKRAVESH M. Feature extraction:founda- tions and applications [ M ]. Secaueus, N J, USA : SPringer -Verlag NewYork, Inc, 2006.
  • 3JOLLIFFE I J. Principal component analysis [ M ]. NewYork : Springer - Verlag, 1986.
  • 4BELHUMEUR P N,HESPANHA J P, KRIEEGLNAN D J, et al. Eigenfaces vs. fisherfaees:recognition using class specific linear projeetion [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711 - 720.
  • 5杜兰,刘宏伟,保铮,张军英.一种用于雷达HRRP功率谱的加权特征压缩方法[J].西安电子科技大学学报,2006,33(2):173-177. 被引量:6
  • 6AZIMI S M R, YAO D, HUANG Q, et al. Underwater target classification using wavelet packets and nerual networks [ J]. IEEE Transaction on Neural Network, 2000, 11 ( 3 ) : 784 - 794.
  • 7黄小毛,张永刚.小波变换在雷达回波信号消噪处理中的应用[J].现代雷达,2001,23(5):34-37. 被引量:15
  • 8CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spot- light synthetic aperture radar - signal processing algo - rithms [ M ]. Norwood, MA : Arthech House, 1995.
  • 9赵玉,陆志宏.一种多模雷达信号分选方法的研究[J].现代电子技术,2010,33(13):99-102. 被引量:6

二级参考文献14

  • 1叶菲,罗景青.一种基于BFSN聚类的多参数综合分选算法[J].雷达与对抗,2005,25(2):43-45. 被引量:7
  • 2祝正威.雷达信号的聚类分选方法[J].电子对抗,2005(6):6-10. 被引量:33
  • 3[5]胡昌华,等.基于MATLAB的系统分析和设计--小波变换.西安电子科技大学出版社,2000
  • 4[6]丁鹭飞,等.雷达原理.西安电子科技大学出版社,1997
  • 5Li H J,Yang S H.Using Range Profiles as Feature Vectors to Identify Aerospace Objects[J].IEEE Trans on Antenna Propagation,1993,41 (3):261-268.
  • 6Du Lan,Bao Zheng,Xing Mengdao.Research on the Characteristics of the Radar One Dimension Range Profile of the Aircrafe Target[J].Journal of Xidian University,2001,28(sup):14-19.
  • 7Zhang X,Shi Y,Bao Z.A New Feature Vector Using Selected Bispectra for Signal Classification with Application in Radar Target Recognition[J].IEEE Trans on Signal Processing,2001,49(9):1 875-1 885.
  • 8Du L,Liu H,Bao Z.Radar HRRP Target Recognition by the Higher-order Spectra Features[A].Proceedings of the IASTED International Conference[C].Anaheim:ACTA,2004.627-632.
  • 9Azimi-Sadjadi M R,Yao D,Huang Q,et al.Underwater Target Classification Using Wavelet Packets and Nerual Networks[J].IEEE Trans on Neural Network,2000,11 (3):784-794.
  • 10Theodoridis S,Koutroumbas K.Pattern Recognition[M].Singapore:Elsevier Science,2003.

共引文献24

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部