期刊文献+

基于SIFT-GMLBP的机器人视觉图像特征提取算法 被引量:4

Visual Image Feature Extraction Algorithm for Moving Robot Base on SIFT-GMLBP
下载PDF
导出
摘要 为了改善环境变化较大时机器人在对图像特征提取效果欠佳的问题,对局部二值模式(LBP)进行了改进,根据图像中心像素点邻域之间的相互关系划分网格进行编码,提出了SIFT-MLBP相结合的图像特征提取算法。使用SIFT算法得到图像特征的关键点后,以区域中每个像素点为中心构建网格化结构,计算之间的相邻象素的局部差异,并对对比度不同的像素编码分配权重。结合Gabor变换对基于模式的特征向量进行提取,建立SIFT-GMLBP特征向量,采用原补码互相映射的方式降低特征向量维数。实验证明,SIFT-GMLBP算法具有良好的特征匹配效果,匹配正确率达到95%以上,运行时间降低0.05S。该方法对外部环境的变化具有较强的鲁棒性,能够提高移动机器人在复杂环境中对图像识别的速度和精度。 In order to improve problems of poor image feature extraction in larger environmental changes, the LBP is improved. Encoded by meshing according to the relationship between neighborhoods of the center pixel and the image feature extraction algorithm of SIFT-MLBP is proposed. In each pixel as the center to construct the grid structure and calculate local differences between the adjacent pixels after get the key point of the image features by u_sing SIFT algorithm, and then assign weights to the pixel coding of different contrast. The feature vectors based on the mode are extracted and establish SIFT-GMLBP feature vector by combining Gabor transform. Reduce the dimension of feature vectors using the original code and complement mapping. Experimental results show that the proposed algorithm has a good matching result on Visual Image Feature Extraction, the recognition time is shortening to 0. 05S, and the recognition rate is improved to more than 95%. It is validated that the algorithm is strongly robust to the environment change, and is able to meet the requirements of Speed and accuracy in the Image recognition for mobile robots.
作者 崔畅 赵强
出处 《激光杂志》 CAS CSCD 北大核心 2014年第12期45-49,共5页 Laser Journal
基金 辽宁省高校杰出青年学者成长计划项目(LJQ2011032)
关键词 网格 局部二值模式 视觉图像 特征提取 SIFT SIFT Mesh Local binary patterns Visual image Feature extraction
  • 相关文献

参考文献6

二级参考文献57

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 3Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 4Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 5Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 8Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 9Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 10COMANICIU D,RAMESH V,MEER P.Kernel-basedobject tracking[J].IEEE Trans on PAMI,2003,25(5):564-577.

共引文献150

同被引文献37

  • 1帅晓锋,郭建,朱飞.机器人YAG激光加工系统在车身开发中的应用[J].激光杂志,2008,29(4):60-61. 被引量:8
  • 2杨培,徐滨士,吴林,朱胜.基于弧焊机器人的柔性再制造系统[J].电焊机,2006,36(3):19-21. 被引量:3
  • 3孙立宁,刘彦武,曲东升,李长峰,冯斌,王礼权.ICF靶支撑定位机器人系统研究[J].强激光与粒子束,2007,19(8):1303-1307. 被引量:13
  • 4罗元,熊艳,苏琴.基于双目视觉的智能清洁机器人覆盖率测试系统设计与实现[J].激光杂志,2014,34(12):12-16.
  • 5Li Z, Ge S S. Adaptive robust controls of biped robots [ J ]. IET Control Theory & Application, IET Control Theory & Applications ,2013,7 (2) : 161 - 175.
  • 6Nakada M, Allen B, and Shigeo M, Terzopoulos D. Learning arm motion strategies for balance recovery of humanoid ro- bots[ C ]. Proceeding of 2010 International Conference on E- merging Security Technologies (EST). Canterbury, IEEE, 2010,165-170.
  • 7Suwanratchatamanee K, Matsumoto M, Hashimoto S. Balance control of humanoid robot in object lifting task with tactile sensing system[ C ]. Proceeding of 20114th International Con- ference on Human System Interactions (HSI). Yokohama: IEEE ,2011,431-436.
  • 8Julier S J, Uhlmann J K. A New Method for the Nonlinear Transformation of Means and Covariance in Filters and Esti- mators [ J ]. IEEE Trans., 45 ( 3 ), 2000,3:477-482.
  • 9Li Z, Ge S S. Adaptive robust controls of biped robots [ J]. IET Control Theory & Application, IET Control Theo- ry & Applications, 2013, 7(2) : 161-175.
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International journal of computer vision, 2004, 60(2): 91-110.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部