期刊文献+

关于有限群超可解性的一种新判定方法

On Some New Criterion of Supersolvability of Finite Groups
下载PDF
导出
摘要 利用子群的弱s-置换性质研究超可解子群的积的问题,并给出群的超可解性的一些判别方法。设群G可以表示为2个子群A和B的积,A在G中拟正规且B为超可解,如果A的Sylow子群的所有极大子群在G中弱s-置换,则G为超可解群。从而得到1个群为超可解群的这样的一种新判别法。 We use weak s-permutation subgroups to study the problem about solvable subgroup,and give some new criterion of supersolvability of finite groups. Suppose that a group G is a product of two subgroups,A and B,where A is quasinormal in G and B is supersolvable. If every maximal subgroup of every Sylow subgroup of A is weak s-permutable in G,then G is supersolvable. Then a new criterion of supersolvability of finite groups is obtained.
出处 《成都信息工程学院学报》 2014年第6期665-668,共4页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(11471055)
关键词 基础数学 代数学 有限群 超可解群 SYLOW子群 拟正规子群 弱s-可置换 basic mathematics algebra finite groups supersolvable groups Sylow-subgroups quasinormal subgroups weakly s-permutable subgroups
  • 相关文献

参考文献2

二级参考文献54

  • 1Alexander N SKIBA.New characterizations of finite supersoluble groups[J].Science China Mathematics,2008,51(5):827-841. 被引量:7
  • 2徐明曜.有限群导引[M].北京:科学出版社,1999.54-61.
  • 3Doerk K.and Hawkes T,Finite Soluble Groups[M],Berlin/New York:Walter de gruyter,1992.
  • 4Ore O,Contributions in the theorey of groups of finite order[J],Duke Math.J,1939,5:431-460.
  • 5Ito N.and Szep J,Uber die quasinormalteiler endlicher gruppen[J],Act.Sci.Math,1962,23:168-170.
  • 6Kegal O.H,Sylow gruppen and subnormalteiler endlicher gruppen[J],Math.Z,1962,87:205-221.
  • 7Deskins W.E,On quasinormal subgroups of finite groups[J],Math.Z,1963,82:125-132.
  • 8Asaad M.and Heliel A.A,On permutable subgroups of finite groups[J],Arch.Math.(Basel),2003,80(2):113-118.
  • 9Srinivasah S,Two sufficient conditions for supersolubility of finite groups[J],Israel J.Math,1990,35:210-214.
  • 10Palchik E.M,Groups whosei-maximal subgroups are permutable with Sylow subgroups[J],Vesci.Akad.Navuk BSSR,Ser.Fiz.-Mat.Navuk,1968(1):43-48.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部