摘要
为了求解对流边界层理论中一个非自治微分方程系统,作者采用伽略金有限元方法,此方法是通过将无限区间上的三阶非线性微分方程转化成有限区间上的二阶微分形式,并构造出相应的伽略金有限元方程来求得数值解,该数值解与先前一些作者的结果一致,并且计算效率显高于其它数值方法.
In order to obtain the nonautonomous differential equation,the author uses the Galerkin finite element method,which is to change the three-order nonlinear differential equations on infinite interval into second-order differential form on finite interval,the numerical results obtained by the finite element equations are in agreement with those obtained by previous authors,and the amount of computational effort is significantly less than that by other numerical methods.
出处
《成都信息工程学院学报》
2014年第6期673-678,共6页
Journal of Chengdu University of Information Technology
基金
Project supported by the National Natural Science Foundation of China(11171046)
关键词
应用数学
非线性分析
非自治
边界层
有限元
数值解
applied mathematics
nonlinear analysis
nonautonomous
boundary layer
finite element
numerical results