摘要
设p>0,μ和μ_1是[0,1)上的正规函数.本文首先给出了C^n中单位球上μ-Bergman空间A^p(μ)的几种等价刻画;然后分别刻画了A^p(μ)到A^p(μ_1)的微分复合算子D_φ为有界算子以及紧算子的充要条件,同时给出了当p>1时D_φ为A^p(μ)到A^p(μ_1)上紧算子的一种简捷充分条件和必要条件.
Let p 〉 0, μ and μ1 be two normal functions on [0, 1). In this paper, a kind of equivalent characterizations of the p-Bergman space on the unit ball in Cn are given first. Furthermore, the necessary and sufficient conditions that the differentiation composition operator Dφ is a bounded operator or a compact operator from AP(p) to AP(μ1) are given, respectively. At the same time, a simple sufficient condition and the necessary condition that Dφ is a compact operator from AP(μ) to AP(μ1) are given.
出处
《数学年刊(A辑)》
CSCD
北大核心
2014年第6期741-756,共16页
Chinese Annals of Mathematics
基金
湖南省教育厅重点基金(No.10A074
No.12A206)
湖南省重点学科建设项目
湖南师范大学数学与计算机科学学院高性能计算与随机信息处理省部共建教育部重点实验室的资助
关键词
μ-Bergman空间
刻画
微分复合算子
有界性
紧性
μ-Bergman space, Characterization, Differentiation composition operator, Boundedness, Compactness