期刊文献+

Linear Commuting Maps on Parabolic Subalgebras of Finite-dimensional Simple Lie Algebras

Linear Commuting Maps on Parabolic Subalgebras of Finite-dimensional Simple Lie Algebras
下载PDF
导出
摘要 A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear mapφon P is commuting if and only if φ is a scalar multiplication map on P. A map φ on a Lie algebra g is called to be commuting if [φ(x),x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear map φ on P is commuting if and only if φ is a scalar multiplication map on P.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第4期516-522,共7页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(Ill01084) Supported by the Fujian Province Natural Science Foundation of China
关键词 commuting maps finite-dimensional simple Lie algebras standard parabolic subalgebras commuting maps finite-dimensional simple Lie algebras standard parabolic subalgebras
  • 相关文献

参考文献16

  • 1BENKOVI D, EREMITA D. Commuting traces and commutativity preserving maps on triangular Mge- bras[J]. J Algebra, 2004, 280(2): 797-824.
  • 2BRESAR M. Commuting traces of biadditive maps, commutativitypreserving mappings and Lie map- pings[J]. Trans Amer Math Soc, 1993, 335(2): 525-546.
  • 3BRESAR M. Commuting maps: a survey[J]. Taiwan Residents J Math, 2004, 8(3): 361397.
  • 4BRESAR M, MIERS C R. Commuting maps on Lie ideals[J]. Comm Algebra, 1995, 23(14): 5539-5553.
  • 5BRESAR M, SEMRL P. Commuting traces of biadditive maps revisited[J]. Comm Algebra, 2003, 31(1): 381-388.
  • 6CHEN Zheng-xin, WANG Deng-yin. Nonlinear maps satisfying derivability on standard parabolic subalge- bras of finite-dimensional simple Lie algebras[J]. Linear Multilinear Algebra, 2011, 59(3): 261-270.
  • 7CHEN Zheng-xin, XIAO Zhan-kui. Nonlinear Lie triple derivations on standard parabolic subalgebras of finite-dimensional simple Lie algebras[J]. Linear Multilinear Algebra, 2012, 60(6): 645-656.
  • 8CHEUNG Wai-shun. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63(1): 117-127.
  • 9DIVINSKY N. On commuting automorphisms of rings[J]. Trans Roy Soc Canada Sect III, 1955, 49: 19-22.
  • 10HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory[M]. New York: Springer, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部