期刊文献+

基于凸优化技术的改进型卡尔曼滤波算法

Improved Kalman Filter Based on Convex Optimization Technique
下载PDF
导出
摘要 为了能够在高斯噪声和稀疏噪声混合情况下对目标进行准确跟踪,提出基于凸优化的改进型卡尔曼目标跟踪算法。改进后的方法以传统卡尔曼滤波方法为基础,结合凸优化技术,从最大后验估计理论和贝叶斯理论的角度构建目标跟踪的优化问题,将噪声统计特性作为先验约束引入优化过程中,实现在高斯噪声和稀疏噪声混合情况下对目标的准确跟踪。仿真实验结果证明该方法的可行性和有效性。 In order to track objects under Gauss noise and sparse noise conditions with high accuracy, an improved Kalman object tracking method based on convex optimization is proposed. By convex optimization technique, the improved method makes use of statistics feature of various kinds of noise to achieve robustness against Gauss noise and sparse noise in the perspective of maximum posterior estimation theory and Bayesian theory. The experiment results show the feasibility and effectiveness of the proposed method.
作者 冯宝
出处 《自动化与信息工程》 2014年第5期19-22,共4页 Automation & Information Engineering
关键词 目标跟踪 卡尔曼滤波 凸优化 Object Tracking Kalman Filter Convex Optimization
  • 相关文献

参考文献11

  • 1丁克良,沈云中,欧吉坤.整体最小二乘法直线拟合[J].辽宁工程技术大学学报(自然科学版),2010,29(1):44-47. 被引量:162
  • 2聂鹏飞,曾谦,马海涛,李月,林红波.消减地震勘探随机噪声:导数算子约束下的维纳滤波[J].吉林大学学报(地球科学版),2010,40(6):1471-1478. 被引量:5
  • 3Yang P, Sun H, Zu L. Adaptively target tracking method based on double-kalmanfilter in existence of outliers [C]// in Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on, 2010:950-954.
  • 4Molfis J M. The Kalman filter: A robust estimator for some classes of linear-quadratic problems[J]. IEEE Transactions on Information Theory, 1976,22(5):526-534.
  • 5Kalman R E. A new approach to linear filtering and prediction problems[J].Transactions of the ASME-Joumal of Basic Engineering, 1960, 82:34- 35.
  • 6Huber P. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964,35(1):73-104.
  • 7Hyndman R J, Koeheler A B. Another look at measures of forecast accuracy[J]. International Journal of Forecasting, 2006, 22(4): 679-688.
  • 8Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge University Press, 2004.
  • 9Mattingley J, Boyd S. Real-time convex optimization in signalpmcessing[J]. IEEE Signal Proc. Mag.,2010,27(3): 50-61.
  • 10Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice Using Matlab[J]. John Wiley &Sons, Inc., 2001.

二级参考文献22

  • 1李雄军.对X和Y方向最小二乘线性回归的讨论[J].计量技术,2005(1):50-52. 被引量:20
  • 2梁家惠.用最小二乘法进行直线拟合的讨论[J].工科物理,1995,5(3):11-15. 被引量:15
  • 3杨宝俊,李月,刘晓华,金雷,赵雪平,袁野,高颖.改善地震勘探记录的4项技术[J].吉林大学学报(地球科学版),2006,36(5):856-862. 被引量:10
  • 4Bjorck A. Numerical Methods for Least Squares Problems. SIAM Publications[M].Philadelphia PA,1996.
  • 5Golub G H, Van Loan C F. An analysis of the Total Least Squares problem[J]. SIAM J Numer Anal, 1980,17(6):883-893.
  • 6Van Huffel S, Vandewalle J.The Total Least Squares Problem Computational Aspects and Analysis[M].SIAM, Philadelphia ,1991.
  • 7Wolf P R, Ghilani C D. Adjust Computations: Statistics and Least Squares in Surveying and GIS[M]. John:Wiley & Sons, Inc 1997.
  • 8Vaseghi S V.现代信号处理与噪声降低[M].邱天爽,刘文红,郭莹,等译.北京:电子工业出版社,2007.
  • 9Simon D,Marc M.GSVD-based optimal filter for single and multi-microphone speech enhancement[J].IEEE Transctions on Signal Processing,2002,50(9):2230-2244.
  • 10Nikolas P,Aggelos K.Methods for choosing the regu-larization parameter and estimating the noise variance in image restoration and their relation[J].IEEE Transactions on Image Processing,1992,1(3):322-336.

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部