期刊文献+

基于ARIMA模型的时间序列数据挖掘方法改进 被引量:5

Time series data mining method based on ARIMA model improvements
下载PDF
导出
摘要 ARIMA模型是一种很重要的时间序列数据挖掘模型,但是这个模型往往只是对某个时间点进行研究.事实上一段时间往往影响未来的预测结果,就ARIMA模型的数据挖掘方法进行改进,并用美国IT界的股票价格数据对改进的模型进行了实证分析.结果显示改进后的模型与未来股票价格的预测更加准确. ARIMA model is a very important time series data mining model. But this model often aims at point in time. In fact,the time often affect future predictions. In this paper,the data mining method of ARIMA model was improved,and was analyzed by stock price data for U. S. IT. The results showed that the improved model and predict future stock prices were more accurate.
作者 闵盈盈
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2014年第6期675-676,681,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 ARIMA模型 数据挖掘 预测 ARIMA model data mining forecast
  • 相关文献

参考文献6

二级参考文献31

  • 1金晓钟,程邦瑜.森林可燃物水分时滞[J].森林防火,1993(4):35-36. 被引量:4
  • 2王海晖,朱霁平,姜伟,王清安,邵剑.森林地表火行为估算的数学模型[J].火灾科学,1994,3(1):33-41. 被引量:33
  • 3邱天爽,王宏禹.几种基本时间延迟估计方法及其相互关系[J].大连理工大学学报,1996,36(4):493-498. 被引量:17
  • 4Ramaswamy S. et al.. On the discovery of interesting patterns in association rules. In: Proceedings of the 24th International Conference on Very Large Data Bases (VLDB), New York, 1998, 368~379
  • 5Srikant R. et al.. Mining quantitative association rules in large relational tables. In: Proceedings of the 1996 ACM SIGMOD Conference on Management of Data, Montreal, 1996, 1~12
  • 6Srikant R. et al.. Mining generalized association rules. In: Proceedings of the 21st International Conference on Very Large Data Bases (VLDB), Zurich, Switzerland, 1995, 407~419
  • 7Pen J. et al.. CLOSET: An efficient algorithm mining frequent closed itemsets. In: Proceedings of the 2000 ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery, Dallas, TX, 2000, 11~20
  • 8Zaki M.J. et al.. CHARM: An efficient algorithm for closed association rule mining. Computer Science, Rensselaer Polytechnic Institute, Troy, New York: Technical Report 99-10, 1999, 1~24
  • 9Han J. et al.. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD Conference On Management of Data, Dallas, TX, 2000, 1~12
  • 10Bing Liu et al.. Analyzing the subjective interestingness of association rules. Intelligent Systems, 2000, 15(5): 47~55

共引文献45

同被引文献27

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部