期刊文献+

Plurigenera of compact connected strongly pseudoconvex CR manifolds In memory of Salah Baouendi 被引量:1

Plurigenera of compact connected strongly pseudoconvex CR manifolds In memory of Salah Baouendi
原文传递
导出
摘要 Strongly pseudoconvex CR manifolds are boundaries of Stein varieties with isolated normal singularities.We introduce a series of new invariant plurigeneraδm,m∈Z+for a strongly pseudoconvex CR manifold.The main purpose of this paper is to present the following result:Let X1and X2be two compact strongly pseudoconvex embeddable CR manifolds of dimension 2n-1 3.If there is a non-constant CR morphism from X1to X2,thenδm(X2)δm(X1)whereδm(Xi)is the plurigeneus of Xi(see Definition 2.4). Strongly pseudoconvex CR manifolds are boundaries of Stein varieties with isolated normal singularities.We introduce a series of new invariant plurigeneraδm,m∈Z+for a strongly pseudoconvex CR manifold.The main purpose of this paper is to present the following result:Let X1and X2be two compact strongly pseudoconvex embeddable CR manifolds of dimension 2n-1≥ 3.If there is a non-constant CR morphism from X1to X2,thenδm(X2)≤δm(X1)whereδm(Xi)is the plurigeneus of Xi(see Definition 2.4).
出处 《Science China Mathematics》 SCIE CSCD 2015年第3期525-530,共6页 中国科学:数学(英文版)
基金 supported by the Start-Up Fund from Tsinghua University and National Natural Science Foundation of China(Grant No.11401335)
关键词 plurigenera strongly pseudoconvex CR manifold 紧凑型 CR 歧管 强连通 拟凸 非恒定
  • 相关文献

参考文献13

  • 1Andreotti A, Grauert H. Thormes de finitude pour la cohomologie des espaces complexes. Bull Soc Math France, 1962, 90:193-259.
  • 2Boutet de Monvel L. Integration des quations de Couchy-Riemann induites formelles. Sminaire lquations aux drives partielles lineaires et non lineaires, 1974-1975, 9:1-13.
  • 3Fornaess J E. Embedding strictly pseudoconvex domains in convex domains. Amer J Math, 1976, 98:529-569.
  • 4Harvey R, Lawson B. On boundaries of complex analytic varieties I. Ann of Math, 1975, 102:233-290.
  • 5Laufer H B. On rational singularities. Amer J Math, 1972, 94:597-608.
  • 6Luk H S, Yau S. algebraic classification and obstructions to embedding of strongly pseudoconvex compact 3dimensional CR manifolds in C3. Math Nachr, 1994, 170:183-200.
  • 7Luk H S, Yau S. Explicit construction of graph invariant for strongly pseudoconvex compact 3-dimensional rational CR manifolds. Compos Math, 1998, 114:77-111.
  • 8Luk H S, Yau S, Zang W T. Complete invariant of a family of strongly pseudoconvex domains in Al-singularities: Bergman function. Contemp Math AMS, 2006, 400:161-171.
  • 9Prill D. Local classification of quotients of complex manifolds by discontinuous groups. Duke Math J, 1967, 34:375-386.
  • 10Rossi H. Attaching analytic spaces to an analytic space along a pseudoconcave boundary. In: Proc Conf Complex Analysis. Berlin: Springer, 1965, 242-256.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部