期刊文献+

On base manifolds of Lagrangian fibrations

On base manifolds of Lagrangian fibrations
原文传递
导出
摘要 We consider base spaces of Lagrangian fibrations from singular symplectic varieties. After defining cohomologically irreducible symplectic varieties, we construct an example of Lagrar, gian fibration whose base space is isomorphic to a quotient of the projective space. We also prove that the base space of Lagrangian fibration from a cohomologically symplectic variety is isomorphic to the projective space provided that the base space is smooth. We consider base spaces of Lagrangian fibrations from singular symplectic varieties.After defining cohomologically irreducible symplectic varieties,we construct an example of Lagrangian fibration whose base space is isomorphic to a quotient of the projective space.We also prove that the base space of Lagrangian fibration from a cohomologically symplectic variety is isomorphic to the projective space provided that the base space is smooth.
出处 《Science China Mathematics》 SCIE CSCD 2015年第3期531-542,共12页 中国科学:数学(英文版)
基金 supported by Japan Society for Promotion of Sciences(Grant No.18684001)
关键词 Lagrangian fibration singularity base manifolds symplectic varieties 拉格朗日 射影空间 歧管 基础空间 纤维化 品种 同构
  • 相关文献

参考文献22

  • 1Bayer A Macrl E. MMP for moduli of sheaves on K3s via wall-crossing: Nef and movable cones, Lagrangian fibrations. ArXiv:1301.6968, 2013.
  • 2Beauville A. Symplectic singularities. Invent Math, 2000, 139:541-549.
  • 3Greb D, Kebekus S, Kovics S J, et al. Differential forms on log canonical spaces. Publ Math Inst Hautes ltudes Sci, 2011, 114:87-169.
  • 4Greh D, Kebekus S, Peternell T. Singular spaces with trivial canonical class. ArXiv:1110.5250, 2011.
  • 5Griffits F, Staid V. Locally homogeneous complex manifolds. Uspehi Mat Nauk, 1971, 26:117-168.
  • 6Hwang J-M. Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1. Ann Inst Fourier, 2007, 57:815 823.
  • 7Hwang J M. Base manifolds for fibrations of projective irreducible symplectic manifolds. Invent Math, 2008, 174: 625 644.
  • 8Kaledin D. Symplectie singularities from the Poisson point of view. J Reine Angew Math, 2006, 600:135-156.
  • 9Kaledin D, Lehn M, Sorger C. Singular symplectic moduli spaces. Invent Math, 2006, 164:591 614.
  • 10Kebekus S, Sol Conde L. Existence of rational curves on algebraic varieties, minimal rational tangents, and applica- tions. In: Global Aspects of Complex Geometry. Berlin: Springer, 2006, 359-416.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部