期刊文献+

不确定量测联合信号重构的稳定性 被引量:1

STABILITY OF JOINTLY SPARSE SIGNAL RECOVERY WITH UNCERTAIN MEASUREMENTS
原文传递
导出
摘要 研究了分布式压缩感知(Distributed Compressed Sensing,DCS)理论对联合稀疏信号进行联合重构的稳定性问题.文中讨论的联合稀疏信号模型中含有两个近似稀疏信号,且信号的量测过程中带有噪声.证明利用分布式压缩感知思想对近似稀疏的联合稀疏信号的联合稀疏重构具有稳定性,刻画了重构信号的误差,并与单个信号的稀疏重构导致的误差进行了比较,证明了在一定条件下,利用分布式压缩感知思想对信号进行联合重构的误差界小于单个信号重构的误差界. This paper considers the stability of jointly recovery for jointly sparse signals with distributed compressed sensing theory. The jointly sparse model studied in this paper contains two approximate sparse signals with approximate sparse common components and innovations. The measurements to the signals contain noises. Inspired by the stability of single-signal recovery, this paper characterizes the error of jointly signal recovery and makes a comparison with the case of single-signal recovery. Furthermore, the condition is demonstrated jointly recovery is smaller than that induced that under which the error induced by by single-signal recovery.
出处 《系统科学与数学》 CSCD 北大核心 2014年第10期1244-1251,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61120106011 61203029) 山东省委省政府泰山学者建设工程
关键词 分布式压缩感知 联合稀疏信号 约束等距性质 Distributed compressed sensing, jointly sparse signal, restricted isometry property
  • 相关文献

参考文献10

  • 1Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measure-ments. Commun. Pure Appl. Math” 2006, 59(8): 1207-1223.
  • 2Donoho D. Compressed sensing. IEEE Trans, on Information Theory, 2006, 52(4): 1289-1306.
  • 3Haupt J, Nowak R. Signal reconstruction from noisy random projections. IEEE Trans, on Infor-mation Theory, 2006, 52(9): 4036-4048.
  • 4Baron D, Duarte M F, Sarvotham S, Wakin M B, Baraniuk R G. An information-theoreticapproach to distributed compressed sensing. Proceedings of the 43rd Allerton Conference onCommunication, Control, and Computing, 2005.
  • 5Duarte M F, Sarvotham S, Baron D, Wakin M B, Baraniuk R G. Distributed compressed sensingof jointly sparse signals. Conference Record of Thirty-Ninth Asilomar Conference on Signals,Systems and Computers, 2005, 24: 1537-1541.
  • 6Duarte M F, Sarvotham S, Wakin M B, Baron D, Baraniuk R G. Joint sparsity models fordistributed compressed sensing. Online Proceedings of the Workshop on Signal Processing withAdaptative Sparse Structured Representations (SPARS), 2005.
  • 7Wang W, Garofalakis M, Ramchandran K. Distributed sparse random projections for refinableapproximation. Proceedings of the Sixth International Symposium on Information Processing inSensor Networks, New York: Association for Computing Machinery, 2007, 331-339.
  • 8Valsesia D, Coluccia G, Magli E. Joint recovery algorithms using difference of innovations for dis-tributed compressed sensing. The 47th Asilomar Conference on Signals, Systems, and Computers,2013,414—417.
  • 9Lu H, Long X, Lv J. A fast algorithm for recovery of jointly sparse vectors based on the alternatingdirection methods. Proceedings of the 14th International Conference on Articial Intelligence andStatistics (AISTATS), 2011, 15: 461-469.
  • 10Candes E. The restrict isometry property and its implications for compressed sensing. ComptesRendus Math, 2008, 346(3): 589-592.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部