期刊文献+

改进的变步长维纳系统盲源分离方法

An Improved Variable Step Size Wiener System Blind Source Separation Method
下载PDF
导出
摘要 基于非线性盲源分离的维纳系统算法中,采用固定步长导致算法的收敛速度和稳态误差之间存在矛盾,直接影响分离算法的性能。为了解决该问题,提出了基于非线性函数的变步长维纳系统盲源分离方法。该方法将更新的步长以非线性函数的形式引入到分离算法中,使得稳态时参数更新的步长尽可能小,以避免发生振荡。变步长算法在分离过程中的每次更新都会使步长自动进行合理的调整,使得收敛速度提高了53%,误差减小了45%。实验仿真表明,相对原算法,提出的维纳系统盲源分离方法可以更好地分离出信源信号,而且具有较小的误差和较快的收敛速度。 In the nonlinear blind source separation algorithm of Wiener system,the fixed step size leads tothe contradiction between convergence speed and steady-state error of the algorithm,which directly affectsthe performance of the separation algorithm. To solve the problem,an algorithm based on variable step sizeblind source separation method of Wiener system is proposed in this paper. This method that updates thestep length in the form of a nonlinear function is introduced into the separation algorithm,makes the steady-state parameters to update the step size as small as possible,so as to avoid oscillating. On the contrary,step increases,speeds up the convergence,increases steady-state error. The variable step size algorithm inthe process of separating each update makes step automatically and reasonably adjust,improves the per-formance of Wiener system blind source separation algorithm. Simulation shows the blind source separationmethod of Wiener system in this paper can separate source signals better with lower errors and faster con-vergence speed in comparison with the original algorithm.
出处 《电讯技术》 北大核心 2015年第2期151-155,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61271115) 吉林省青年科技研究项目(201101110)~~
关键词 维纳系统 盲源分离 非线性盲源分离 变步长算法 Wiener system blind source separation nonlinear blind source separation variable step size algorithm
  • 相关文献

参考文献16

  • 1任东晓,叶茂,殷英,朱远翔.基于互信息最小的非线性混合胎儿心电信号提取方法[J].电子测量与仪器学报,2010,24(7):680-685. 被引量:8
  • 2Diamantaras K,Papadimitriou T,Vranou G. Blind separa-tion of multiple binary sources from one nonlinear mixture[C] / / Proceedings of 2011 IEEE International Conferenceon Acoustics, Speech and Signal Processing. Prague:IEEE,2011:2108-2111.
  • 3Almeida M,Almeida L. Nonlinear separation of show throughimage mixtures using a physical model trained with ICA[J].Signal Processing,2012,29(4):872-884.
  • 4王晓伟,石林锁.自适应非线性BSS及其在齿轮故障诊断中的应用[J].振动与冲击,2012,31(10):45-48. 被引量:3
  • 5Almeida L B. Linear and nonlinear ICA based on mutualinformation-the MISEP method[J]. Signal Processing,2004,84(2):231-245.
  • 6Sun Z L. An extension of MISEP for post-nonlinear-line-ar mixture separation [J]. IEEE Transactions on CircuitsSystem,2009,56(8):654 -658.
  • 7Duarte L T,Jutten C. A mutual information minimizationapproach for a class of nonlinear recurrent separating sys-tems[C] / / Proceedings of 2007 IEEE Workshop on Ma-chine Learning for Signal Processing. Thessaloniki:IEEE,2007:122 -127.
  • 8Chen Wei,Li C K,Wai L W,et al. Post-nonlinear underde-termined ICA by Bayesian statistics[C] / / Proceedings ofICA 2006. Charleston,SC,USA:IEEE,2006:773-780.
  • 9Duarte L T,Jutten C,Moussaoui S. A Bayesian NonlinearSource Separation Method for Smart Ion-Selective ElectrodeArrays [J]. Sensors Journal,2009,9(12):1763-1771.
  • 10Ren D X,Mao Y S. Extracting post-nonlinear signal withreference[J]. Computers and Electrical Engineering,2011,37(6):1171-1181.

二级参考文献43

  • 1吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994,22(1):55-61. 被引量:35
  • 2高鹰,姚振坚,李朝晖,谢胜利.基于广义特征值和核函数的非线性盲分离算法[J].系统工程与电子技术,2006,28(10):1490-1493. 被引量:5
  • 3叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,1990,18(4):63-70. 被引量:73
  • 4LEE C S,MASEK M,CHIOU P L,et al.Towards higher accuracy and better noisy-tolerance for fetal heart rate monitoring using Doppler ultrasound[C].IEEE Region 10 Conference,Singapore,2009:1-6.
  • 5MUHAMMAD A H,MUHAMMAD I I,MAMUN B I R,et al.VHDL modeling of FECG extraction from the composite abdominal ECG using artificial Intelligence[C].Churchill:IEEE International Conference on Industrial Technology,2009:1-5.
  • 6AHMADI M,AYAT M,ASSALEH K,et al.Fetal ECG signal enhancement using polynomial classi?ers and wavelet denoising[C].Cairo:International Conference on Biomedical Engineering,2008:1-4.
  • 7YANG S L,WANG ZH H.A new algorithm for extraction fetal electrocardiogram[C].Tianjian:Fifth International Conference on Natural Computation:2009:97-99.
  • 8KHALED A,AL-NASHASH H.A novel technique for the extraction of fetal ECG using poly-nominal networks[J].IEEE transactions on biomedical engineering,June 2005,52(6):1148-1152.
  • 9ALMEIDA L B.MISEP -an ICA method for linear and nonlinear mixtures based on mutual information[C].Hawaii:The 2002 International Joint Conference on Neural Networks,2002:442-447.
  • 10SUN ZH L.An extension of MISEP for post-nonlinear-linear mixture separation[J].IEEE Transactions on Circuits and Systems II:Express briefs,2009,56(8):654-658.

共引文献410

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部