期刊文献+

非线性振动分析的切比雪夫谱元法 被引量:1

Chebyshev Spectral Element Method for Analysis of Nonlinear Vibration Problems
下载PDF
导出
摘要 为了进一步探索Chebyshev时间谱元法求解非线性的振动问题,从Bubnov-Galerkin方法出发,在第二类Chebyshev正交多项式极点处;用重心Lagrange插值来构造节点基函数及其特性,推导了非线性振动问题的伽辽金谱元离散方案,借助Newton-Raphson法求解非线性方程组。对于非线性单摆,还需要将二分法和重心Lagrange插值结合求解角频率。以Duffing型非线性振动和非线性单摆振动问题为例,验证了此方法具有现实可行和高精度的优点。 The solution of nonlinear vibration problems was studied by using Chebyshev spectral elements method.The node-based functions were constructed by barycentric Lagrange interpolation at the pole points of Chebyshev orthogonalpolynomials of the 2nd kind which characteristics were analyzed by using Bubnov-Galerkin method. Galerkin discretizationscheme for the nonlinear vibration problems was derived. Finally, the nonlinear equations were solved by Newton-Raphsonmethod. For nonlinear single pendulums, the angular frequencies were solved using the combination of the dichotomywith the barycentric Lagrange interpolation. Two examples of Duffing-type vibration equations and nonlinear vibration ofpendulums were employed to illustrate the feasibility and advantages of high-precision of the proposed method.
出处 《噪声与振动控制》 CSCD 2015年第1期73-77,共5页 Noise and Vibration Control
基金 国家自然科学基金项目资助(51275489)
关键词 振动与波 非线性振动 切比雪夫正交多项式 谱元法 牛顿-拉夫逊方法 vibration and wave nonlinear vibration Chebyshev orthogonal polynomials spectral element method Newton-Raphson method
  • 相关文献

参考文献24

  • 1李安军,邢桂菊,周丽雯.换热器直管非线性振动分析与控制[J].噪声与振动控制,2007,27(5):50-53. 被引量:1
  • 2唐驾时,彭海.阻尼对叶片非线性振动的影响[J].噪声与振动控制,2013,33(5):15-18. 被引量:4
  • 3Orszag S A. Numerical methods for the simulation of turbulence[J]. Physics of Fluids (1958-1988), 2004, 12(12):II-250-II-257.
  • 4Guo B. Spectral methods and their applications[M]. WorldScientific, 1998.
  • 5Boyd J P. Chebyshev and Fourier spectral methods[M].Courier Dover Publications, 2013.
  • 6Valenciano J, Chaplain M A J. A laguerre- legendre spectral-element method for the solution of partial differentialequations on infinite domains: Application to the diffusionof tumour angiogenesis factors[J]. Mathematical andComputer Modelling, 2005, 41(10): 1171-1192.
  • 7Patera A T. A spectral element method for fluid dynamics:laminar flow in a channel expansion[J]. Journal of ComputationalPhysics, 1984, 54(3): 468-488.
  • 8High- order methods for incompressible fluid flow[M].Cambridge University Press, 2002.
  • 9Zhu W, Kopriva D A. A spectral element approximation toprice European options with one asset and stochastic volatility[J]. Journal of Scientific Computing, 2010, 42(3):426-446.
  • 10Zhu W, Kopriva D A. A spectral element approximation toprice European options. II. The Black- Scholes modelwith two underlying assets[J]. Journal of ScientificComputing, 2009, 39(3): 323-339.

二级参考文献123

共引文献38

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部