期刊文献+

基于数字水印的人脸与声纹融合识别算法 被引量:6

Augmenting remote multimodal person verification by embedding voice characteristics into face images
下载PDF
导出
摘要 提出远程多模态的生物特征数字水印算法,将声音特征作为水印加入到人脸图像中.运用文献[1]提出的改进型量化索引调制(QIM)方法,算法加入一个脆弱型的水印用于篡改检测,同时加入一个鲁棒型水印用于隐藏声音的高斯混合模型(GMM)参数.利用人脸、声纹和多模态识别算法,提出的方法能够实现对篡改的检测,对常见的攻击,例如图片缩放、高斯噪声、模糊化、伽马校正和JPEG压缩等具有鲁棒性.在由295人组成的XM2VTS数据库上,该多模态系统能够获得95.93%的识别率,同时获得3.19%的等错误率. A novel biometric watermarking algorithm was proposed to augment remote multimodal recognition by embedding voice characteristics into face images.Using the modified quantization index modulation(QIM)scheme proposed by reference[1],the algorithm embedded both a fragile watermark for tampering detection,and a robust watermark to represent the Gaussian mixture model(GMM)parameters extracted from voice.Using face,voice and multimodal recognition algorithms,the proposed watermarking scheme can detect tampering,and is robust to watermarking attacks such as resizing,Gaussian noise,blurring,Gamma correction and JPEG compression.On the XM2 VTS database consisting of 295 persons,the multimodal system can obtain recognition rate of 95.93% for identification,and equal error rate of 3.19% for verification.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第1期6-14,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61202400)
关键词 人脸识别 声纹识别 数字水印 量化索引调制(QIM) face recognition speaker recognition digital watermarking quantization index modulation(QIM)
  • 相关文献

参考文献16

  • 1MILLER B. Vital signs of identity biometrics [J]. Spec- trum, IEEE, 1994, 31(2): 22- 30.
  • 2DONG J, TAN T. Effects of watermarking on iris rec- ognition performance [C] // Proceedings of the 10th International Conference on Control, Automation, Robot- ics and Vision. Hanoi, Vietnam: Is. n.], 2008: 1156-1161.
  • 3JAIN A K, ULUDAG U. Hiding biometrie data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (11) : 1494 - 1498.
  • 4SATONAKA T. Biometric watermark authentication with multiple verification rule [C] /// Proceedings of the 12th IEEE Workshop on Neural Networks in Signal Pro- cessing. Martigny Valais: IEEE, 2002.. 597- 606.
  • 5LI C, WANG Y, MA B, et al. Tamper detection and self-recovery of biometric images using salient region-based au- thentication watermarking scheme [J]. Computer Standards and Interlaces, 2012, 34(4) : 367 - 379.
  • 6ULUDAG U, PANKANTI S, PRABHAKAR S, et al. Biometric cryptosystems: issues and challenges [ J]. Proceedings of the IEEE, 2004, 92(6) : 948 - 960.
  • 7RATHGEB C, UHL A. A survey on biometric crypto- systems and cancelable biometrics [J]. EURASIP Jour- nal on Information Security, 2011, 2011(1): 1 -25.
  • 8REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using Gaussian mixture speaker models [J]. IEEE Transactions on Speech and Audio Pro- cessing, 1995, 3(1): 72-83.
  • 9LI Q, COX I J. Using perceptual models to improve fi- delity and provide resistance to valumetric scaling for quantization index modulation watermarking [J]. IEEE Transactions on Information Forensics and Security, 2007, 2(2).. 127-139.
  • 10CHEN B, WORNELL G W. Quantization index modu- lation: a class of provably good methods for digital wa- termarking and information embedding [J]. IEEE Transactions on Information Theory, 2001, 47 ( 4 ) : 1423 - 1443.

同被引文献47

引证文献6

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部