期刊文献+

阈值随机共振及其在低质量浓度气体检测中的应用 被引量:1

Application of threshold stochastic resonance in low concentration gas detecting
下载PDF
导出
摘要 提出利用阈值随机共振系统检测低质量浓度气体的方法.对传感器检测信号进行预处理以满足随机共振系统的要求,输入单阈值检测器,采用反映系统输入输出信号之间相关性的互相关系数作为阈值随机共振的表征.对系统的阈值参数进行优化,对最大互相关系数和气体质量浓度的相关性进行回归分析.实验结果表明,在该类系统中,不但存在阈值随机共振,而且随着气体质量浓度的增加最大互相关系数增加,采用最大互相关系数可以进行气体质量浓度的检测,最低检测限可以达到μg/L级别. A low concentration gas detecting method based on threshold stochastic resonance(SR)was proposed.The raw data was pre-processed to satisfy the requirements of SR system and put into the"one level threshold detector".Then the cross-correlation coefficient,which reflected the similarities between the input signal and the output signal,was used to evaluate the performance of SR system.Then the threshold parameters were optimized and the relationship between the maximum cross-correlation coefficient and gas mass concentration was analyzed.Experimental results show that threshold SR can be observed and the maximum cross-correlation coefficient increases with the increase of gas mass concentration.The maximum cross-correlation coefficient can be used to detect the gas mass concentration and the detectable limit can beμg/L level.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第1期15-19,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(31200746) 国家重大科学仪器设备开发专项资助项目(2012YQ15008705) 浙江理工大学"521人才培养计划"资助项目
关键词 阈值随机共振 互相关系数 噪声强度 低质量浓度气体 threshold stochastic resonance cross-correlation coefficient noise intensity low mass concentration gas
  • 相关文献

参考文献15

  • 1DUTTA R, DAS A, STOCKS N G. Stochastic reso- nance-based electronic nose: a novel way to classify bac- teria [J]. Sensors and Actuators B, 2006, 115 (1): 17 - 27.
  • 2BENZI R, SUTERA A, VULPIANI A. The mecha- nism of stochastic resonance [J]. Journal of Physics A: Mathematical and General, 1981, 14(11): 453 -457.
  • 3STOCKS N G. Suprathreshold stochastic resonance in multilevel threshold systems [J]. Physical Review Let- ters, 2000. 84(11), 2310-2314.
  • 4MOSS F, WARD L M, SANNITA W G. Stochastic resonance and sensory information processing: a tutorial and review of application [J]. Clinical Neurophysiology, 2004, 115(2): 267-281.
  • 5STOCKS N G. Suprathreshold stochastic resonance: an exact result for uniformly distributed signal and noise [J]. Physics LettersA, 2001, 279(5): 308-312.
  • 6ROUSSEAU D, FRANCOIS C B. Suprathreshold sto- chastic resonance and signal-to-noise ratio improvement in arrays of comparators[J]. Physics Letters A, 2004, 321(5/6) : 280- 290.
  • 7COLLINS J J, CHOW C C, IMHOFF T T. Aperiodic stochastic resonance in exeitable systems [J]. Physical Review E, 1995, 52(4): 3321-3324.
  • 8GUO Y f, TAN J G. Suprathreshold stochastic reso- nance in multilevel threshold system driven by multiplie- ative and additive noises [J]. Communication in Nonlin- ear Science and Numerical Simulation, 2013, 18 (10): 2852 - 2858.
  • 9BATTYAE W, ANEJAB V P, ROEL P A. Evaluation and improvement of ammonia emissions inventories [J]. Atmospheric Environment, 2003, 37(27): 3873- 3883.
  • 10PERRINO C, CATRAMBONE M, ALLEGRI I, et al. Gaseous ammonia in the urban area of Rome, Italy and its relations hip with traffic emissions [J]. Atmos- pheric Environment, 2002, 36(34) : 5385 - 5394.

二级参考文献10

  • 1杨应奎,毛联波,周兴平,解孝林,Mai Yiu-Wing.碳纳米管在聚合物基体中的分散与有序排列研究——(Ⅱ)碳纳米管在聚合物基体中的有序排列[J].高分子材料科学与工程,2005,21(6):50-54. 被引量:5
  • 2刘军.传感器阵列中阈上随机共振现象的仿真研究[J].传感技术学报,2006,19(3):854-857. 被引量:7
  • 3吴莉莉,惠国华,潘敏,陈裕泉,张孝彬.基于随机共振的纳米碳管气体传感器的研究[J].传感技术学报,2006,19(05B):2114-2118. 被引量:4
  • 4Luca Gammaitoni, Peter Hanggi, Peter Jung, et al. Stochastic Resonance[J]. Reviews of Modern Physics, 1998, 70 (1) : 223-287.
  • 5Thomas Wellens, Vyacheslav Shatokhin, Andreas Buchleitner. Stochastic Resonance[J]. Reports on Progress in Physics, 2004, (67): 45-105.
  • 6Manjarrez E, Mendeza I, Martinez L, et al. Effects of Auditory Noise on the Psychophysical Detection of Visual Signals: Cross-Modal Stochastic Resonance[J]. Neurosci Lett, 2007, 415: 231-236.
  • 7Moss F, Ward I.M, Sannita WG. Stochastic Resonance and Sensory Information Processing: a Tutorial and Review of Application[J]. Clin Neurophysiol, 2004, 115 : 267-281.
  • 8Stocks N. G. Suprathreshold Stochastic Resonance in Multilevel Threshold Systems[J]. Physical Review Letters, 2000, 84 (11): 2310-2313.
  • 9Hitoshi Sasaki, Sadatsugu Sakane, Takuya Ishida, et al. Suprathreshold Stochastic Resonance in Visual Signal Detection [J]. Behavioural Brain Research, 2008, 193:152-155.
  • 10Ritaban Dutt a, Aruneema Das, Nigel G. Stocks et al. Stochastic Resonance-Based Electronic Nose: A Novel Way to Classify Bacteria[J]. Sensors and Actuators B, 2006, 115:17- 27.

共引文献21

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部