期刊文献+

多元交通信息于车速数据融合系统之节能减碳应用研究 被引量:1

A Cost-Effective Tool and Database Demo System for ITS with Instant Traffic Information Help before Eco-driving
下载PDF
导出
摘要 提出了1个经济可运作的实时动态节能减碳计算模型,用KPI来评估节能减碳效果,运作方式如下:配备GPS装置之实验车,后端软件自动动态搭配Google Map与路径图资之起讫点(A→B)来回一趟,才量该车之耗油量,由行前预估值、旅行时间、动态交通事件与实际油耗值之误差分析,在实时交通信息协助下选定之KPI(key performance index)值(含油耗、CO2排放量、道路等级、旅行时间及ETC(electronic toll collection)费用等)做比较。搜集对应环保路径之路网交通信息数据及交通信息建立历史数据库,配合时速/油耗表完成油耗/碳排放系统数据库,得出实时交通信息占比与油耗预估误差率关系图。 This paper proposes a cost-effective operational tool with database demo system at KPI (Key Perform- ance Index) for eco-driving with given instant information help before journey. Equipped with GPS device's vehicles, and with back-end software cooperated with Google map, a geographical information system (GIS) is designed to measure fuel consumption based on the pre-selected points from A to B. The paper starts from selected journey with instant traffic info help to reduce fuel consumption, CO2 emission at traveling-time, dynamic traffic events and actual fuel consumption for error analysis. The errors with the selected KPI (including fuel consumption, CO2 emission, road-level, traveling time and ETC fee, etc. ) is collected to obtain the error rate relationship from the ratio of real instant traffic information and fuel consumption prediction.
出处 《交通信息与安全》 2014年第6期166-170,共5页 Journal of Transport Information and Safety
基金 "交通部"运研所计划项目(批准号:MOTC-IOT-TDB003)资助
关键词 智能型运输系统(ITS) 节能减碳 路径评估 KPI ETC API intelligent transportation systems (ITS) carbon reduction and energy saving route evaluation KPI ETC API
  • 相关文献

参考文献7

  • 1Boriboonsomsin K, Barth M, Zhu W, et al. ECO- routing navigation system based on multi-source historical and real-time traffic information [C] // IEEE ITSC2010 Workshop on Emergent Coopera- tive Technologies in Intelligent Transportation Sys- tems, Madeira Island, portugal : IEEE, 2006.
  • 2Ericsson E, Larsson H, Brundell-Freij K. Optimi- zing route choice for lowest fuel consumption-poten- tial effects of a new driver support tool[J]. Trans- portation Research Part C: Emerging Technologies, 2006 (14) : 369-383.
  • 3Faouzi N E, Lesort J B. Travel time estimation on urban networks from traffic data and on-board trip characteristics"EC]//Japan, Yokohama : Proceedings of the world congress on ITS, 1995:88-93.
  • 4高为,陆百川,贠天鹂,谭伟.基于时空特性和RBF神经网络的短时交通流预测[J].交通信息与安全,2011,29(1):16-19. 被引量:25
  • 5余凯,张存保,石永辉.基于多元因素的高速公路可变限速值计算方法研究[J].交通信息与安全,2011,29(1):4-7. 被引量:7
  • 6邓陈兴,张琼文,朱佩芸,等.多元交通信息于车速数据融合系统之节能减碳应用研究//第十四届海峡两岸智能运输系统学术研讨会,中国,无锡:武汉理工大学ITS2014—33,2014:33.
  • 7王景弘,罗坤荣,邓陈兴,等.2010车路整合系统发展趋势与ITS节能减碳关联之研究[R].台北:交通部运输研究所,MOTC—IOT-100-TDB005,101-149—6158.

二级参考文献18

  • 1胡佩锋,袁振洲.一种基于周相似特性的实时交通量预测模型[J].公路交通技术,2007,23(1):145-149. 被引量:5
  • 2National Center for Statistics & Analysis. Traffic Safety Facts 2000[R]. Washington DC:Report DOT-HS-809-333. NHTSA, U. S. Department of Transportation, 2002:15-20.
  • 3Roads and Traffic Authority of New South Wales, Australia. Speed Problem Definition and Countermeasure Summary[R]. New South Wales:Roads and Traffic Authority of New South Wales, August, 2000:27-38.
  • 4Federal Highway Administration. Synthesis of Safety Research Related to Speed and Speed Limits[R]. Washington DC: Publication No-FHWA-RD, 2000: 98-154.
  • 5Jaehyun P. Modeling of setting speed limits on urban and suburban roadways [D]. Florida: Dissertation for the Doctoral Degree of University of South Florida : South Florida, 2003 : 1-2.
  • 6Ottesen J L, Krammes R A. Speed-profile model for a design-consistence evaluation procedure in the united states [R]. Washington, DC: Transportation Research Record, 1701, Transportation Research Board, 2000 : 76-85.
  • 7Fitzpatrick K, Elefteriadou L, Harwood D, et al. Speed prediction for two-lane rural highways-final report. FHWA[R]. Washington, DC:U. S. Department of Transportation. 2002:35-42.
  • 8Lu Baichuan, Huang Meiling. Traffic flow prediction based on wavelet analysis, genetie algorithm and artificial neural NetworkProeeedings[C]//2thInternational Con[erence on ]ntelligent Computation Technology and Automation, 2009:491-495.
  • 9廖海峰,崔显忠,杜志刚.雾天高速公路安全车速分析[J].交通科技与经济,2009,11(2):1-3. 被引量:10
  • 10陈刚,周杰,张雪君,张忠静.基于BP与RBF级联神经网络的日负荷预测[J].电网技术,2009,33(12):101-105. 被引量:37

共引文献30

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部