期刊文献+

秩约束子集选择问题的分而治之解法

A DIVIDE-AND-CONQUER ALGORITHM FOR THE RANK-CONSTRAINED SUBSET SELECTION PROBLEM
原文传递
导出
摘要 We consider the rank-constrained subset selection problem (RCSS): Given a matrix A and an integer p ≤ rank(A), find the largest submatrix A0 consisting of some columns of A with rank(A0) = p. The RCSS problem is generally NP- hard. This paper focuses on a divide-and-conquer (DC) algorithm for solving the RCSS problem: partition the matrix A into several small column blocks: A = [Al,……) Ak] with a certain column permutation II and decompose p to p1 + p2 + ……+ pk such that solutions of the RCSS problems for smaller couples form a solution of the original RCSS problem. We show that the optimal solution of the RCSS problem can be found by DC algorithm for each p ≤ rank(A), if and only if A is column-partitionable, i. e., rank(A) = Σ rank(Ai). Based upon QR decomposition, a fast algorithm for determining the column partition is offered. Our divide-and-conquer algorithm is also quite efficient even A is approkimately column-partitionable. We consider the rank-constrained subset selection problem (RCSS): Given a matrix A and an integer p ≤ rank(A), find the largest submatrix A0 consisting of some columns of A with rank(A0) = p. The RCSS problem is generally NP- hard. This paper focuses on a divide-and-conquer (DC) algorithm for solving the RCSS problem: partition the matrix A into several small column blocks: A = [Al,……) Ak] with a certain column permutation II and decompose p to p1 + p2 + ……+ pk such that solutions of the RCSS problems for smaller couples form a solution of the original RCSS problem. We show that the optimal solution of the RCSS problem can be found by DC algorithm for each p ≤ rank(A), if and only if A is column-partitionable, i. e., rank(A) = Σ rank(Ai). Based upon QR decomposition, a fast algorithm for determining the column partition is offered. Our divide-and-conquer algorithm is also quite efficient even A is approkimately column-partitionable.
出处 《计算数学》 CSCD 北大核心 2002年第2期229-242,共14页 Mathematica Numerica Sinica
基金 国家重点基础研究专项经费(G19990328) 教育部高校骨干教师基金资助.
关键词 秩约束 子集选择问题 分而治之解法 信息检索 列可分矩阵 整数规划 计算机信息处理 information retrieval, divide-and-conquer algorithm, sub- set selection, column- Partitionable matrix
  • 相关文献

参考文献14

  • 1[1]H. Bart, A. Wagelmans, An integer programming problem and rank decomposition of block upper triangular matrices, Linear Algebra Appl, 305(2000), 107-129.
  • 2[2]M. Berry, S. Dumais, G. O'Brien, Using linear Algebra for intelligent information retrieval,SIAM Rev., 37 (1995), 573-595.
  • 3[3]M. Berry, Z. Drmac, E. Jessup, Matrices, vector spaces, and information retrieval, SIAM Rev., 41(1999), 335-362.
  • 4[4]B. Codenotti, G.Del Corso, G.Manzini, Matrix rank and communication complexity, Linear Algebra Appl, 304(2000), 193-200.
  • 5[5]C. Couvereur, Y. Bresler, On the optimality of the backward greedy algorithm for the sebset selection problem, SIAM J. Matrix Anal. Appl., 21(2000), 797-808.
  • 6[6]P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering in large graphs and matrices, Manuscript.
  • 7[7]Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applicatious and algorithms, SIAM Rev., 41(1999), 637-676.
  • 8[8]G.H. Golub, C.F. Van Loan, Matrix computations, John Hopkins Univ. Press, 1983.
  • 9[9]M. Gu, S. Eisenstat, A divide-and-conquer algorithm for the bidiagonal SVD, SIAM J.Matrix Anal. Appl., 16(1995), 79-92.
  • 10[10]T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SISIR'99), 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部