期刊文献+

一种基于动态词典和三支决策的情感分析方法 被引量:14

A sentiment analysis method based on dynamic lexicon and three-way decision
原文传递
导出
摘要 提出了一种新的特征提取方式,与三支决策思想相结合,运用在文本情感分析中,以提高分类器的效率。根据训练集合创建动态情感词典,然后根据情感词典提取文本的抽象特征,形成特征矩阵。在分类过程中,如果分类器对于目标文本的所属分类确信程度不够高,那么分类器会利用三支决策的思想,将文本置于边界域中,等待别的处理方法。实验结果表明,在英文影评数据集上,基于动态词典的特征提取方法可以取得更好的分类准确率,而且三支决策规则可将一些样例放入边界域,提高了分类准确率。 A new way of feature extraction and the concept of three-way decision was utilized in traditional text senti- ment analysis methods in order to boost the classification accuracy. In the new method, a dynamic lexicon was intro- duced according to the training set and was utilized to extract abstract features for every piece of text to form the feature matrix. Besides, in the classification process, target texts with which the classifier had low confidence of sentiment la- bels were put into the boundary region for later decision. Experimental results showed that the method reached better re- sults with the help of dynamic sentiment lexicon, and the three-way decision also raised the accuracy of classification.
作者 周哲 商琳
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第1期19-23,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金面上项目(61170180)
关键词 情感分析 观点挖掘 文本数据挖掘 特征抽取 三支决策 sentiment analysis opinion mining text data mining feature extraction three-way decision
  • 相关文献

参考文献11

  • 1PANG B, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learning techniques [ C]//Proceedings of the ACL-02 conference on Empiri-cal methods in natural language processing-Volume 10. Philadelphia, USA: Association for Computational Lin- guistics, 2002:79-86.
  • 2PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on mini- mum cuts [ C ]//Proceedings of the 42nd Annual meeting on Association for Computational Linguistics. Barcelona, Spain: Association for Computational Linguistics, 2004: 271.
  • 3BACCIANELLA S, ESULI A, SEBASTIANI F. Senti- WordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining [C]//Proceedings of the In- ternational Conference on Language Resources and Evalu- ation ( LREC ). Valletta, Malta : LREC, 2010:2200-2204.
  • 4TABOADA M, BROOKE J, TOFILOSKI M, et al. Lex- icon-based methods for sentiment analysis[ J ]. Computa- tional Linguistics, 2011, 37(2): 267-307.
  • 5TURNEY P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of re- views[ C]//Proceedings of the 40th annual meeting on association for computational linguistics. Philadelphia, USA: Association for Computational Linguistics, 2002: 417424.
  • 6LI Gang, LIU Fei. A clustering-based approach on senti- ment analysis [ C]//Intelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on. Hangzhou, China : IEEE, 2010 : 331-337.
  • 7OFEK N, CARAGEA C, ROKACH L, et al. A Suite of Core NLP Tools[ DB/OL]. ( 2010-11-16 ) [ 2014-03-26 ]. http ://nlp. stanford, edu/software/corenlp, shtml.
  • 8SINGH V K, PIRYANI R, UDDIN A, et al. Sentiment analysis of textual reviews: Evaluating machine learning, unsupervised and SentiWordNet approaches[ C]//Knowl- edge and Smart Technology (KST), 2013 5th Interna- tional Conference on. Chonburi, Thailand: IEEE, 2013: 122-127.
  • 9OFEK N, CARAGEA C, ROKACH L, et al. Improving sentiment analysis in an online cancer survivor community using dynamic sentiment lexicon [ C ]//Social Intelligence and Technology (SOCIETY), 2013 International Confer- ence on. Pennsylvania, USA: IEEE, 2013 : 109-113.
  • 10YAO Yiyu. Three-way decision: an interpretation of rules in rough set theory[ M ]//Rough Sets and Knowl- edge Technology. Berlin Heidelberg : Springer, 2009 : 642 -649.

同被引文献118

引证文献14

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部