期刊文献+

基于HOG特征和滑动窗口的乳腺病理图像细胞检测 被引量:3

Nuclei detection of breast histopathology based on HOG feature and sliding window
原文传递
导出
摘要 提出一种基于方向梯度直方图(histograms of oriented gradient,HOG)特征和滑动窗口的细胞检测方法,能快速、高效、准确地检测高分辨率病理组织图像中的细胞。该检测算法首先对训练集中的细胞样本块和非细胞样本块提取HOG特征,然后运用HOG特征训练分类器。训练好的分类器用于在整幅病理图像中自动检测细胞。先运用滑动窗的方法在整幅高分辨率病理图像中选取相同尺寸的所有可能的细胞块,被滑动窗选定的图像块提取HOG特征后,送到训练好的分类器中判断是否是细胞块。为了验证提出方法的有效性,将此方法运用于17名乳腺患者的共37张H&E(hematoxylin&eosin)染色高分辨率穿刺切片病理图像上自动检测细胞,通过与softmax(SM)分类器、稀疏自编码器+SM、局部二值模式+SM、支持向量机(support vector machine,SVM)、HOG+SVM、以及HOG+SVM多个模型对细胞检测的准确率、召回率以及综合评价指标的对比表明,本研究提出的方法分别为71.5%,82.3%和76.5%,具有更高的准确率。 A new method was presented which integrated histograms of oriented gradient (HOG) feature and sliding window for rapid, efficient and accurate detection of nuclei from high resolution pathological images. HOG feature was extracted from the training samples which include both nuclei and non-nuclei patches. The supervised classifier were trained with HOG features. The trained classifier was employed for automated nuclei detection from input patches that selected from histopathological images. During the detection, sliding window was used to select patches. In order to verify the effectiveness of the method on detecting nuclei from histopathological images, this article compared the pro- posed method with softmax (SM) classifier, sparse autoencoder(SAE) + SM, local binary pattern (LBP) + SM, sup- port vector machine( SVM), HOG + SM, and HOG + SVM models. The experiments on 37 pieces of H&E staining his- topathological images showed that the proposed method achieved highest precision, recall and F1-measure values, which were 71.5%, 82. 3% and 76. 5% respectively.
作者 项磊 徐军
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第1期37-44,63,共9页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61273259) 江苏省"六大人才高峰"高层次人才资助项目(2013-XXRJ-019)
关键词 方向梯度直方图特征 滑动窗口 非最大值抑制 组织病理图像 细胞检测 HOG feature sliding window non-maxima suppression histopathological image nuclei detection
  • 相关文献

参考文献21

  • 1LERMAN C, TROCK B, RIMER B K, et al. Psycholog- ical side effects of breast cancer screening [ J ]. Health Psychology, 1991, 10(4):259.
  • 2FATAKDAWALA H, XU J, BASAVANHALLY A, et al. Expectation--maximization-driven geodesic active contour with overlap resolution (emagacor) :application to lymphocyte segmentation on breast cancer histopathology [J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(7) :1676-1689.
  • 3MOUELHI A, SAYADI M, FNAIECH F, et al. Auto- matic image segmentation of nuclear stained breast tissue sections using color active contour model and an improved watershed method [J]. Biomedical Signal Processing and Control, 2013, 8(5) :421-436.
  • 4XU J, JANOWCZYK A, CHANDRAN S, et al. A high- throughput active contour scheme for segmentation of his- topathological imagery [ J ]. Medical Image Analysis, 2011, 15(6) :851-862.
  • 5BASAVANHALLY A, XU J, MADABHUSHI A, et al. Computer-aided prognosis of ER + breast cancer histopa- thology and correlating survival outcome with oncotype DX assay [ C ]//Biomedical Imaging: From Nano to Mac- ro. [ S. l. ] : IEEE, 2009 : 851-854.
  • 6GHAZNAVI F, EVANS A, MADABHUSHI A, et al. Digital imaging in pathology:whole-slide imaging and be- yond [ J ]. Annual Review of Pathology : Mechanisms of Disease, 2013, 8:331-359.
  • 7CIRESAN D C, GIUSTI A, GAMBARDELLA L M, et al. Mitosis detection in breast cancer histology images with deep neural networks [ C ]//Medical Image Compu- ting and Computer-Assisted Intervention. Germany : Springer Berlin Heidelberg, 2013:411-418.
  • 8WOLBERG W H, STREET W N, MANGASARIAN O L. Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspi- rates [ J ]. Cancer Letters, 1994, 77 (2) : 163-171.
  • 9BASAVANHALLY A N, GANESAN S, AGNER S, et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2 + breast cancer histopa- thology[ J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(3):642-653.
  • 10PETUSHI S, GARCIA F U, HABER M M, et al. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer [ J ]. BMC Medical Imaging, 2006, 6( 1 ) :14.

同被引文献46

  • 1李成云,陈宗麒,陈琼珠.稻瘟病菌的研究进展[J].西南农业学报,1995,8(3):107-112. 被引量:6
  • 2American Cancer Society. Cancer Facts & Figures 2015 [ R]. At- lanta: American Cancer Society, 2015:4 -6.
  • 3ROBBINS P, PINDER S, de KLERK N, et al. Histological grading of breast carcinomas: a study of interobservcr agreement [ J]. Hu- man pathology, 1995, 26(8) : 873 -879.
  • 4DALTON L W, PINDER S E, ELSTON C E, et al. Histologic grad- ing of breast cancer: linkage of patient outcome with level of pathol- ogist agreement[ J]. Modern Pathology, 2000, 13 (7) : 730 - 735.
  • 5MAY M. A better lens on disease [ J]. Scientific American, 2010, 302(5) : 74 -77.
  • 6BOURZAC K. Software: the computer will see you now [ J]. Na- ture, 2013, 502(7473) : $92 - $94.
  • 7CHEN J, Qu A, WANG L, et al. New breast cancer prognostic fac- tors identified by computer-aided image analysis of HE stained histo- pathology images [ J]. Scientific Reports, 2015(5): 10690.
  • 8PETUSHI S, GARCIA F U, HABER M M, et al. Large-scale com- putations on histology images reveal grade-differentiating parameters for breast cancer [ J]. BMC Medical Imaging, 2006, 6(1): 14.
  • 9HALL B H, IANOSI-IRIMIE M, JAVIDIAN P, et al. Computer- assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls [J]. BMC Medical Imaging, 2008, 8(1): 11.
  • 10BASAVANHALLY A N, GANESAN S, AGNER S, et al. Comput- erized image-based detection and grading of lymphocytic infiltration in HER2 + breast cancer histopathology [ J]. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 642-653.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部