期刊文献+

钯掺杂聚精氨酸修饰电极同时测定5-羟基色氨酸和多巴胺 被引量:1

Preparation of Palladium Doped Poly(L-arginine)Modified Glassy Carbon Electrode and Simultaneous Determination of 5-Hydroxytryptophan and Dopamine
下载PDF
导出
摘要 制备了钯掺杂聚L-精氨酸修饰玻碳电极(Pd-PA/GCE),研究了5-羟基色氨酸(5-HTP)和多巴胺(DA)在该修饰电极上的电化学行为,建立了同时测定5-HTP和DA的电化学新方法。在pH=2.0的磷酸缓冲溶液中,扫描速率为160mV/s时,DA在该电极上产生一对氧化还原峰,峰电位分别为0.515V和0.464V;5-HTP在该电极上产生一个氧化峰,峰电位为0.643V,两者的氧化峰电位差达128mV。在最优条件下,同时测定5-HTP和DA的线性范围分别为:9.00×10-7~1.00×10-5 mol/L、1.00×10-5~4.00×10-5 mol/L(5-HTP);7.00×10-7~1.00×10-5 mol/L、1.00×10-5~4.00×10-5 mol/L(DA)。检出限分别为7.0×10-7 mol/L和5.0×10-7 mol/L。方法可用于药剂中5-HTP和DA的测定。 A palladium doped poly(L-arginine)modified electrode was prepared by cyclic voltammetric method.The electrochemical behaviors of 5-hydroxytryptophan and dopamine on the palladium doped poly(L-arginine)modified electrode were studied.And a cyclic voltammetric method was developed for the simultaneous determination of 5-hydroxytryptophan and dopamine.In pH=2.0phosphate buffer solution,the modified electrode gave a pair of redox peaks at Epa=0.516 Vand Epc=0.464 Vfor dopamine and one oxidation peak at Epa=0.642 Vfor 5-hydroxytryptophan at the scan rate of 160 mV/s.Under the optimum conditions,the linear ranges for simultaneous determination of 5-hydroxytryptophan and dopamine were 9.00×10-7-1.00×10-5 mol/L and 1.00×10-5-4.00×10-5 mol/L for 5-hydroxytryptophan,and 7.00×10-7-1.00×10-5 mol/L and 1.00×10-5-4.00×10-5 mol/L for dopamine.The detection limits of 5-hydroxytryptophan and dopamine were 7.0×10-7 mol/L and 5.0×10-7 mol/L,respectively.The method was successfully applied to the determination of 5-hydroxytryptophan and dopamine in medicaments with satisfactory results.
作者 李辉 孙登明
出处 《分析科学学报》 CAS CSCD 北大核心 2015年第1期67-70,共4页 Journal of Analytical Science
基金 安徽省高校省级自然科学研究重点项目(No.KJ2011A255)
关键词 L-精氨酸 钯掺杂 5-羟基色氨酸 多巴胺 修饰电极 L-arginine Palladium doped 5-Hydroxytryptophan Dopamine Modified electrode
  • 相关文献

参考文献13

  • 1Bruni O,Ferri R,Miano S,Verrillo E.Eur J Pediatr[J],2004,163:402.
  • 2Zhang L,Cheng Y,Lei J P,Liu Y T,Hao Q,Ju H X.Analytical Chemistry[J],2013,85:8001.
  • 3Subbaraju G V,Kannababu S,Vijayakumar K,Murthy P B S,Vanisree M,Tsay H S.International Journal of Applied Science and Engineering[J],2005,3(2):111.
  • 4Tachiki K H,Aprison M H.Analytical Chemistry[J],1975,47(1):7.
  • 5Kavurl S R,Mukkamala S B.International Journal of Biological and Chemical Science[J],2010,4(2):520.
  • 6程宏英,陶鹏宇,屠一锋.芦丁修饰电极研究多巴胺的电化学响应[J].分析科学学报,2009,25(4):439-442. 被引量:7
  • 7Ranganathan D,Zamponi S,Berrettoni M,Layla M B,Cox J A.Talanta[J],2010,82:1149.
  • 8Farjami E,Campos R,Nielsen J S,Gothelf K V,Kjems J,Ferapontova E E.Analytical Chemistry[J],2013,85:121.
  • 9Kalachar H C B,Arthoba Naik Y,Basavanna S,Viswanatha R,Venkatesha T G,Sheela T.Journal of Chemical and Pharmaceutical Research[J],2011,3(3):530.
  • 10Iorquirene de Oliveira Matos,Wendel Andrade Alves.ACS Applied Materials&Interfaces[J],2011,3:4437.

二级参考文献14

共引文献6

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部