期刊文献+

约束松弛机制和反向搜索的粒子群算法

Particle swarm optimization based on relaxation mechanism for constrained conditions and opposition searching
下载PDF
导出
摘要 提出了一种基于约束松弛机制和反向搜索的粒子群算法。约束松弛机制通过度量不可行解与可行解的距离,使边界位置的不可行解得以概率性存活,缓解了约束条件的不利影响;反向搜索机制则使不可行解迅速转向某一对称区域,提高了可行域的发掘效率。同时,利用局部最优位置的概念,使个体依据约束违反情况执行不同的搜索算子,克服了函数形貌的影响。通过六组标准约束优化问题的测试结果表明,所提出算法总体优于几种对比算法,最优解与理论值的相对误差由0~25.214%降低到了0~0.752%。 This paper proposed a particle swarm optimization based on relaxation mechanism and opposition searching. The relaxation mechanism treated constrained conditions by computing the distance between feasible and infeasible solutions, which made some infeasible solutions near the feasible region survive in a probability, and relieved the influences of constrained con- ditions to the optimization. The opposition searching guided infeasible solutions quickly to tend to symmetrical region so that the efficiency of finding feasible region was improved. Besides, the algorithm adopted different operators for different individu- als depending on the constrained violation to overcome the effect of the landscape, wherein the operators were designed based on the notion of local optimal position. Experiments on six benchmarks display that the proposed algorithm works better than other algorithms, and the relative errors between obtained value and theory value is reduced from 0 - 25. 214% to 0-- 0. 752%.
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期694-696,704,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61379079)
关键词 约束优化问题 松弛机制 反向搜索 粒子群算法 函数形貌 constrained optimization problem relaxation mechanism opposition searching particle swarm optimization algo-rithm function landscape
  • 相关文献

参考文献12

二级参考文献90

  • 1陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 2张雯,杨春明,罗雪春.改进的粒子群优化算法(英文)[J].微电子学与计算机,2007,24(2):70-72. 被引量:11
  • 3段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977. 被引量:74
  • 4孙宇明.作业车间调度问题的改进混合遗传算法[J].数学理论与应用,2007,27(1):75-77. 被引量:3
  • 5Marco Dorigo, Tommas Stutzle. Ant colony optimization [M]. MIT Press, 2004.
  • 6Dorigo M,Gambardella L M.Ant colony system: a cooperativelearning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997(1):53-66.
  • 7Fidanova S.ACO Algorithm for MKP using various heuristic information [C]. 5th Int'l Conference of Numerical Methods and Applications, LNCS 2542.Germany:Springer,2002:434-440.
  • 8Coello C A C.Use of a self-adaptive penalty approach for engineering optimization problems [J]. Computer in Industry, 2000, 41:113-127.
  • 9Deb K.Optimal design of a welded beam via genetic algorithms [J].AIAA Journal, 1991,29:2013 -2015.
  • 10Eberhart R, Kenndy J. A new optimizier using particle swarm theory[C]//Proc of the 6th Int Symposium on Micro Machine and Human Science. New York: IEEE, 1995 : 39 - 43.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部