期刊文献+

基于改进EGO算法的黑箱函数全局最优化 被引量:6

Global optimization of black-box function using improved EGO algorithm
下载PDF
导出
摘要 基于Kriging模型的EGO算法是一种适用于黑箱函数求极值的全局最优化算法,但该算法忽略了对Kriging模型精度的控制。针对该算法的不足之处,提出了兼顾Kriging模型精度与模型寻优的迭代函数,并将改进后的EGO算法应用于五个检验函数及一个存货模型,从Kriging模型精度及优化结果两方面对改进前后的算法进行比较。结果表明,改进后的EGO算法提高了最终Kriging模型的精度,并在对目标函数进行少量估值的情况下获得了更为全局化的最优解。 EGO algorithm based on Kriging model is a suitable method for the global optimization of black-box function, but it ignored the accuracy of Kriging model. To overcome the shortcoming of EGO algorithm, this paper proposed an improved algo- rithm, and it' s iterative function took into account the accuracy and the optimization of the Kriging model. Then this paper ap- plied the algorithm to five test functions and an inventory model. The results show that compared to the original EGO algo- rithm, the improved algorithm can improve the final accuracy of the Kriging model and obtain a more globally optimal solution via a small amount of the valuations to the objective function.
作者 王彦 尹素菊
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期764-767,共4页 Application Research of Computers
关键词 计算机实验设计 KRIGING模型 EI方法 全局最优化 design of computer experiments Kriging model El method global optimization
  • 相关文献

参考文献15

  • 1JONES D R, SCHONLAU M, WELCH W J. Efficient global optimi- zation of expensive Black-box function [ J]. Journal of Global Opti- mization, 1998,13 (4) : 455- 492.
  • 2VAZQUEZ E, BECT J. Convergence properties of the expected im- provement algoritnm with fixed mean and covariance functions [ J ]. Journal of Statistical Planning and Inference, 2010, 140( 11 ) : 3088- 3095.
  • 3王红涛,竺晓程,杜朝辉.基于Kriging代理模型的改进EGO算法研究[J].工程设计学报,2009,16(4):266-270. 被引量:14
  • 4杜波,金光,周经伦,张礼伟.基于代理模型的武器装备体系优化算法研究[J].计算机工程与科学,2012,34(6):74-78. 被引量:5
  • 5KEANE A J. Statistical improvement criteria for use in multi-objective design optimization [ J ]. AIAA Journal,2006,44 (4) :879- 891.
  • 6JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[ J ]. Journal of Aircraft,2005,42 (2) :413-420.
  • 7SCHONIAU M, WELCH W J, JONES D R. Global versus local search in constrained optimization of computer models[ C ]//New De- velopments and Applications in Experimental Design IMS Lecture Notes-Monograph Series. 1998 : 11-25.
  • 8SONG Xiao, ROTARU M, SYKULSKI J K. Exploration versus ex- ploitation using Kriging surrogate modelling in electromagnetic design [ J]. The International Journal for Computation and Mathemat- ics in Electrical and Electronic Engineering, 2012, 31 (5): 1541-1551.
  • 9SONG Xiao, ROTARU M, SYKULSKI J K. Adaptive weighted expec- ted improvement with rewards approach in Kriging assisted electromag- netic design [ J ]. IEEE Trans on Magnetics,2013, 49 ( 5 ) : 2057- 2060.
  • 10SANTNER T J, WILLIAMS B J, NOTZ W I, et al. The design and analysis of computer experiments [ M]. [ S. 1. ] : Springer,2003.

二级参考文献24

  • 1刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 2游海龙,贾新章,张小波,董萍.试验设计与仿真相结合构造集成电路元模型的方法研究[J].电子学报,2006,34(6):1159-1162. 被引量:4
  • 3耿振余,毕义明.作战体系优化方法[J].火力与指挥控制,2006,31(7):27-29. 被引量:5
  • 4周少平,李群,王维平.支持武器装备体系论证的探索性分析框架研究[J].系统仿真学报,2007,19(9):2066-2069. 被引量:13
  • 5SIMPSON T W, PEPLINSK J D, KOCH P N. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with Computers, 2001,17(2):129-150.
  • 6JONES D L. A taxonomy of global optimization methods based on response surfaces [J]. Journal of Global Optimization, 2001, 21 (4) : 345-383.
  • 7SCHONLAU M. Computer experiments and global optimization[D]. Waterloo: University of Waterloo, 1997.
  • 8KEANE A J. Statistical improvement criteria for use in multi-objective design optimization [J]. AIAA Journal, 2006,44(4) :879-891.
  • 9XU Y, LI G, WU Z. A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move [J]. Applied Artificiel Intelligence,2001,15(7) :601-631.
  • 10LOACTELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1) :57-76.

共引文献17

同被引文献33

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部