期刊文献+

基于自适应变异粒子群优化算法的测试数据生成 被引量:8

Test data generation based on adaptive mutation particle swarm algorithm
下载PDF
导出
摘要 针对粒子群优化算法中群体易出现过早收敛的不足,提出了粒子群优化算法的改进算法AMPSO(adaptive mutation particle swarm optimization)算法并应用于测试数据生成中。引入约简粒子群优化算法,提高算法搜索速度;在算法进化过程中增加自适应调整策略,定义适应度评价阈值判断群体早熟现象,构建一个改进的自适应变异算子提高粒子变异率;通过实验确定阈值比例系数。结合实验结果从收敛代数和收敛时间两方面对比分析,证明了所提方法不仅能够防止算法出现过早收敛的问题,而且提高了测试数据生成效率。 In the meta-heuristic algorithms, the particle swal^n optimization algorithm may fall into a precocity easily and waste resources compared with other algorithms, this paper proposed an improved particle swarm optimization algorithm AMP- SO algorithm and applied it to the process of test data generation. It introduced the reduced particle swarm optimization algo- rithm based on particle swarm optimization algorithm, in evolutionary process of algorithm the adaptive strategy defined fitness evaluation threshold to judge the precocious phenomenon and built an improved self-adaptive mutation operator to increase the variation rate, then determined threshold scale factor through experiments. It used four typical procedures in the experiment. Through analyzing the experimental data in two aspects of convergence generations and convergence time, the resuhs demon- strate the effectiveness of the proposed method compared with existing methods.
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期786-789,共4页 Application Research of Computers
基金 武器装备预研重点基金资助项目(9140A15060311JB5201)
关键词 粒子群优化算法 自适应变异算子 测试数据自动生成 particle swarm algorithm adaptive mutation operator automatic test data generation
  • 相关文献

参考文献13

二级参考文献56

共引文献794

同被引文献97

  • 1张明,王贵作,张寅熙.水文相似流域最大熵优选模型研究[J].水利水电技术,2012,43(2):14-16. 被引量:7
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3傅博.基于蚁群算法的软件测试数据自动生成[J].计算机工程与应用,2007,43(12):97-99. 被引量:32
  • 4律亚楠.基于遗传算法的测试数据生成研究[D].汕头大学.2008.
  • 5刘渝,杜江,张俊飚.湖北省农业水资源利用效率评价[J].中国人口·资源与环境,2007,17(6):60-65. 被引量:63
  • 6YUHUI SHI, RUSSELL C EBERHART. Empirical study of par-ticle swarm optimization. Proceedings of the 1999 Congress on Ev-olutionary Computation[C]. Washington, 1999(3) : 1945-1950.
  • 7Kennedy J, Eberhart R. Particle swarm optimization [C]// IEEE International Conference on Neural Networks, 1995:1942-1948 .
  • 8Yang X S. Flower pollination algorithm for global optimization[C]// International Conference on Unconventional Computing and Natural Computation. Springer Berlin Heidelberg, 2012: 240-249.
  • 9Yang X S, Karamanoglu M, He X. Multi-objective flower algorithm for optimization[J]. Procedia Computer Science, 2013, 18: 861-868.
  • 10Abdel-Raouf O, Abdel-Baset M. A new hybrid flower pollination algorithm for solving constrained global optimization problems[J]. International Journal of Applied Operational Research-An Open Access Journal, 2014, 4(2): 1-13.

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部