期刊文献+

基于Mean-Shift优化的TLD视频长时间跟踪算法 被引量:11

Long-term video tracking algorithm of optimized TLD based on Mean-Shift
下载PDF
导出
摘要 针对TLD(tracking learning detection)算法同时包含了跟踪、检测和学习三个部分,具有较高计算量的缺点,提出了采用Mean-Shift算法替换原TLD跟踪器部分的光流跟踪算法。该优化方法利用具有计算量小的MeanShift算法替换计算量较大的光流法进行跟踪,以通过目标模型和候选目标模型之间的巴氏系数与阈值的比较来判定跟踪失败的自检测,并通过计算Mean-Shift跟踪返回的目标框和上一帧TLD返回的目标框之间的相似度来进一步得到跟踪的有效性,在发生跟踪失败时由检测器重新初始化跟踪。实验结果表明,该优化方法在视频长时间跟踪算法中具有较高的鲁棒性和准确性,并且与原TLD算法相比,该优化方法在跟踪速度上得到了提升。 TLD algorithm combines tracking,learning and detection simultaneously, so its computation is high. This paper adopted Mean-Shift algorithm to substitute the optical flow tracker of TLD. Considering optical flow tracking has high computa- tion,this optimized algorithm made use of less computation of Mean-Shif! to replace optical flow in original TLD. Compared the Bhattacharyya coefficient between target model and target candidate model with the given threshold,it decided whether track failed. Measured similarity between the bounding box returned by Mean-Shift anti the bounding box returned by TLD last time, it decided the confidence of the track. If it was failure, the detector would re-initialize the tracker. The experiments show that the optimized algorithm can acquire high robustness and accuracy in long term tracking in video, and it obtains a more rapid tracking speed than original TLD algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第3期925-928,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61071198) 浙江省基金资助项目(LY13F0110015) 宁波市基金资助项目(2012A610019)
关键词 长时间跟踪 TLD 在线学习 MEAN-SHIFT long-termtracking TLD on-line learning Mean-Shift
  • 相关文献

参考文献14

  • 1BRUCE L,TAKEO K. An interative image registration tecchnique with an application to stereo vision [ C ]//Proc of Imaging Understanding Workshop. 1981 : 121-130.
  • 2顾幸方,茅耀斌,李秋洁.基于Mean Shift的视觉目标跟踪算法综述[J].计算机科学,2012,39(12):16-24. 被引量:31
  • 3BARTLETF M S, LIUTLEWO R T, FRANK M,et al. Recognizing fa- cial expression:machine learning and application to spontaneous be- havior[ C]//Proc of IEEE Conference on Computer Vision and Pat- tern Recognition. Washington DC:IEEE Computer Society,2005:568- 573.
  • 4GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[ C ]//Proc of European Conference on Computer Vision. Berlitz: Springer,2008:234- 247.
  • 5KALAI, Z. MATAS J, MIKOLAJCZYK K. Tracking-learning-detection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012,34( 7 ) : 1409-1422.
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrapping binary classifiers by structural constraints[ C ]//Proc of IEEE Confer- ence on Computer Vision and Pattern Recognition. 2010:49-56.
  • 7LAMPERT C H oBLASCHKO M B,HOFMANN T. Beyond sliding win- dows:object localization by efficient subwindow search [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2008.
  • 8SAFFARI A, LEISTNER C, SANTNER J,et at. On-line random forests [ C ]//Proc of the 12th IEEE Conference on Computer Vision. 2009.
  • 9COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using Mean-Shift [ C]//Proc, of IEEE Conferenee on Computer Vision and Patten1 Recognition. 2000.
  • 10周鑫,钱秋朦,叶永强,王从庆.改进后的TLD视频目标跟踪方法[J].中国图象图形学报,2013,18(9):1115-1123. 被引量:47

二级参考文献84

共引文献76

同被引文献72

  • 1董永坤,王春香,薛林继,杨明.基于TLD框架的行人检测和跟踪[J].华中科技大学学报(自然科学版),2013,41(S1):226-228. 被引量:6
  • 2刘燕,刘浩学.基于计算机视觉的单目摄影纵向车距测量系统研究[J].公路交通科技,2004,21(9):103-106. 被引量:14
  • 3谢兴盛 ,方勇文 ,吴云峰 ,叶玉堂 ,陈昌彬 ,李长成 ,王兵学 .汽车自适应驰控装置中的红外激光测距[J].激光技术,2004,28(5):521-523. 被引量:8
  • 4王荣本,李斌,储江伟,纪寿文.公路上基于车载单目机器视觉的前方车距测量方法的研究[J].公路交通科技,2001,18(6):94-98. 被引量:39
  • 5KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-back- ward error: automatic detection of tracking failures [ C l// Proc. 20th International Conference on Pattern Recognition (ICPR). [S. 1.] :IEEE,2010:2756-2759.
  • 6KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[ C]// Proe. IEEE 12th International Conference on Computer Vi- sion Workshops ( ICCV Workshops) . [ S. 1. ] : IEEE, 2009 : 1417-1424.
  • 7KALAL Z, MATAS J, MIKOLAJCZYK K. Pn learning: bootstrapping binary classifiers by structural constraints [C]// Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . [ S. 1. ] : 1EEE,2010:49-56.
  • 8KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learn- ing-detection[ J]. IEEE transactions on pattern analysis and machine intelligence,2012,34(7) : 1409-1422.
  • 9NEMADE B, BHARADI V A. Adaptive automatic track- ing, learning and detection of any real time object in the vid- eo stream[ C ]// Proc. IEEE 5th International Conference on Confluence The Next Generation Information Technology Summit (Confluence). [ S. 1.] :IEEE,2014: 569-575.
  • 10HAILONG W, GUANGYU W,JIANXUN L. An improved tracking- learning - detection method [ C ]// Proc. IEEE 34th Chinese Control Conference (CCC). [ S. 1. ] : IEEE, 2015 : 3858-3863.

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部