期刊文献+

广义量词的单调性与其他语义性质之间的关系 被引量:4

Relations Between Monotonicity of Generalized Quantifiers and Other Semantic Properties
下载PDF
导出
摘要 广义量词理论是一阶逻辑的扩展理论,它比一阶逻辑更有利于计算机进行知识表示和知识推理。广义量词的语义性质主要包括:同构闭包性、扩展性、驻留性、单调性、对称性。单调性是广义量词最为重要的语义性质。给出6个定理,主要论述广义量词的单调性与其他语义性质之间的关系,比如:具有单调性的广义量词首先得满足驻留性。 Generalized quantifier theory is an extension of first-order logic. It is more favorable than the first-order logic for knowledge representation and reasoning in computer science. Semantic properties of generalized quantifiers include the isomorphism closure,the extension,the conservativity,the monotonicity and the symmetry. And the monotonicity of generalized quantifiers is the most important semantic properties. Six theorems were given in this article and the relations between monotonicity and the other semantic properties were mainly illustrated. For example,the generalized quantifiers which are monotonic firstly must be conservative.
出处 《重庆理工大学学报(社会科学)》 CAS 2015年第1期49-53,共5页 Journal of Chongqing University of Technology(Social Science)
基金 国家社会科学基金西部项目"汉语语句系统的逻辑语义学研究"(13XYY016)
关键词 广义量词 同构闭包性 扩展性 单调性 驻留性 对称性 一阶逻辑 generalized quantifiers isomorphism closure expansibility monotonicity conservativity symmetry first-order logic
  • 相关文献

参考文献6

二级参考文献49

  • 1A. Pietarinen, Signs of Logi c, Dordrecht : Springer,2006, pp. 182 - 186.
  • 2A. Mostowski, "On a Generalization of Quantifiers", Fundamenta Mathematicae, vol. 44,1957, pp. 12 - 36.
  • 3P. Lindstrm, "First - order Predicate Logic with Generalized Quantifiers", Theoria, vol. 32,1966, pp. 186 - 195.
  • 4J. van Benthem, Essays in Logical Semantics, D. Reidel Pub. Co. ,1986.
  • 5D. M. Gabbay, M. A. Reynolds, M. Finger, Temporal Logic --Mathematical Foundation and Computational Aspects, Oxford : Clarendon Press, 2000, pp. 229 - 272.
  • 6J.M. Gawron, "Quantit]cation, Quantificational Domains and Dynamic Logic , The Handbool o.1 Contemporary 3emanttc I neory, Blackwell:Blackwell Publishing, 1997, pp. 171 -188.
  • 7张晓君、郝一江《广义量词的单调性及其检测方法》,《中国分析哲学2009》,杭州:浙江大学出版社,20lO年,第101~112页.
  • 8J. Barwise,R. Cooper, "Generalized Quantifiers and Natural Language", Linguistics and Philosophy, no.2,vol.4,1981 ,pp. 159-219.
  • 9S. Peters, D. Westersthl, Quantifiers in Language and Logic, Oxford: Claredon Press, 2006, pp. 178 - 179.
  • 10J. Vlananen, "Unary Quantifiers on Finite Models", Journal of Logic, Language and Information, vol. 6, 1997, pp. 275 - 304.

共引文献25

同被引文献25

  • 1王振华,张大群,张先刚.马丁对语篇语义的研究[J].当代外语研究,2010(10):43-49. 被引量:15
  • 2林胜强,张晓君.广义量词的推理模式研究[J].湖南科技大学学报(社会科学版),2014,17(6):29-33. 被引量:8
  • 3BARWISE J, ETCHEMENDY J. Language, Proof and Logic[ M]. [ S. 1. ] :CSLI Publications,2003.
  • 4PETERS S,WESTERSTAHL D,PETERS S,et al. Quanti- tiers in Language and Logic [ M ]. [ S. 1. ] : Claredon Press ,2006.
  • 5DAWAR A, GRADEL E. Generalized Quantifiers and 0 - 1 Laws [ EB/OL]. [ 2010 - 05 - 18 ]. http://www. eprints, kfupm, edu. sa/42572/, 1995.
  • 6WESTERSTAHL D. Quantifiers in Formal and Natural Languages [ M ]//GABBAY D M, GUENTHNER F. Handbook of Philosophical Logic, 2nd Edition, Vol. 14, Springer,2007.
  • 7FLUM J. Characterising logics[ C ]//Barwise J, Feferman S. Model-Theoretic Logics, 1985:77 - 120.
  • 8WESTERSTAHL D. Generalized Quantifiers [ EB/OL 1. [2010 -05 -16]. Standford Encyclopedia of Philosophy, http://www, plato, standford, edu/entries/generalized- quantifiers,2005.
  • 9张晓君,郝一江.广义量词的单调性与数字三角形[J].重庆理工大学学报(社会科学),2010,24(3):18-24. 被引量:9
  • 10张晓君.广义量词的相关性质研究[J].逻辑学研究,2010,3(3):67-79. 被引量:13

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部