期刊文献+

基于小波变换和神经网络的光伏功率预测 被引量:14

Photovoltaic output power prediction approach based on wavelet transform and neural network
下载PDF
导出
摘要 提出了一种小波分解(Wavelet Transform,WT)和径向基函数神经网络(RBFNN)相结合的预测方法,并引入理论太阳辐照量、温度和相对湿度数据来预测未来24 h光伏电站的输出功率。小波分解能有效地表征光伏电站输出功率时间序列的局部特征,人工智能方法可以捕捉到光伏发电中的非线性特性。预测结果表明,采用该方法预测光伏电站输出功率,能有效地提高预测精度。 A method combining wavelet transform(WT) and radial basis function neural network(RBFNN) is proposed to forecast output power of the next day by incorporating data of solar radiation,temperature and relative humidity. In this method, WT can effectively describe the local characteristics of the PV power output time series; neural network can capture the nonlinear characteristics of photovoltaic power generation. The results show that the method can effectively improve the predictive accuracy of PV station output power.
出处 《可再生能源》 CAS 北大核心 2015年第2期171-176,共6页 Renewable Energy Resources
关键词 神经网络 小波变换 光伏发电 功率预测 气象因素 neural network wavelet transform photovoltaic(PV) power generation power forecasting weather factor
  • 相关文献

参考文献8

二级参考文献82

共引文献346

同被引文献166

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 2Sergey Dudin,Chesoong Kim,Olga Dudina.MMAP\M\N queueing system with impatient heterogeneous customers as a model of a contact center.Computers&Operations Research,2013(40):1790-1803.
  • 3WEDDING II D K,CIOS K J.Time series forecasting by combining RBFnetworks,certainty factors,and the BoxJenkins model[J].Neurocomputing,1996,10(2):149-168.
  • 4Kennedy J,EberhartR C.Particle Swarm Optimization[C].IEEE on Networks.1995:1942-1948.
  • 5James L.Mc Clelland,David E.Rumelhart,the PDP Research Group.Parallel Distributed Processing[M].The MIT Press.1987:3-44.
  • 6European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 7PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 82014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 9GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 10PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.

引证文献14

二级引证文献303

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部