期刊文献+

微反应器内催化剂分布对甲醇蒸气重整的影响

Effects of Catalyst Activity Distribution in Micro-Reactor on Methanol Steam Reforming
下载PDF
导出
摘要 甲醇重整制氢具有多方面的优势,是制取氢气的重要途径.传统固定床反应器受到传热传质的限制,导致床层中颗粒催化剂的效率降低.本文设计了一种微型板式反应器,开展了固定床催化剂在床层中不同分布形式对甲醇蒸气重整制氢反应性能影响的研究.结果表明,催化剂床层中沿反应物流动方向上的温度分布出现了冷点温差.通过催化剂合理分布可以降低冷点温差并可提高甲醇蒸气重整反应的氢气产量.在最佳催化剂分布条件下获得了微反应器轴向最小冷点温差的温度分布,其甲醇转化率和氢气产率也较高. Methanol reforming is a promising candidate of hydrogen producting method with advantages in many ways. Conventional reformers with packed bed catalyst are usually limited by heat and mass transfer, leading to low catalyst effectiveness of the conventional pellet. In this work, a micro plate-type reactor was developed to investigate the influence of catalyst activity distribution on methanol steam reforming. Results show that cold spot temperature differences were observed in the temperature profile along the flow of the reactants in micro-reactor. It was experimen- tally verified that decreasing cold spot temperature differences improves hydrogen production. The minimum cold spot temperature difference was observed in the optimal catalyst distribution. It is shown that the optimal catalyst distribu- tion is superior in methanol conversion and H2 production rate.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2015年第1期36-40,共5页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51006050 50906104) 国家留学基金资助项目(201208500014)
关键词 甲醇重整 微反应器 催化剂分布 冷点 制氢 methanol reforming micro-reactor catalyst activity distribution cold spot hydrogen production
  • 相关文献

参考文献15

  • 1Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies [J]. Catalysis Today, 2009, 139(4): 244-260.
  • 2Rarnpe T, Heinzel A, Vogel B. Hydrogen generation from biogenic and fossil fuels by autothermal reforming [J]. Journal of Power Sources, 2000, 86(1): 536- 541.
  • 3Halmann M, Frei A, Steinfeld A. Carbothermal reduc- tion of alumina: Thermochemical equilibrium calcula- tions and experimental investigation [J]. Energy, 2007, 32(12): 2420-2427.
  • 4Wang Z, Lin W, Song W, et al. Pyrolysis of the ligno- cellulose fermentation residue by fixed-bed micro reactor [J]. Energy, 2012, 43(1): 301-305.
  • 5Mei D, Qian M, Liu B, et al. A micro-reactor with micro-pin-fin arrays for hydrogen production via metha- nol steam reforming [J]. Journal of Power Sources, 2012, 205: 367-376.
  • 6Zhou W, Tang Y, Pan M, et al. A performance study of methanol steam reforming microreactor with porous copper fiber sintered felt as catalyst support for fuel ceils [J]. International Journal of Hydrogen Energy, 2009, 34(24) : 9745-9753.
  • 7Howard B H, Killmeyer R P, Rothenberger K S, et al. Hydrogen permeance of palladium-copper alloy mem- branes over a wide range of temperatures and pressures [J]. Journal of Membrane Science, 2004, 241 (2) : 207-218.
  • 8Riaza J, alvarez L, Gil M V, et al. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor [J]. Energy, 2011, 36(8): 5314-5319.
  • 9Gutierrez Ortiz F J, Ollero P, Serrera A, et al. Process integration and exergy analysis of the autothermal re- forming of glycerol using supercritical water [J]. Energy, 2012, 42(1) : 192-203.
  • 10Karim A, Bravo J, Datye A. Nonisothermality in packed bed reactors for steam reforming of methanol [J]. AppBed Catalysis A: General, 2005, 282(1): 101- 109.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部