期刊文献+

基于轨迹位置形状相似性的隐私保护算法 被引量:18

Privacy preserving algorithm based on trajectory location and shape similarity
下载PDF
导出
摘要 为了降低轨迹数据发布产生的隐私泄露风险,提出了多种轨迹匿名算法。然而,现有的轨迹匿名算法在计算轨迹相似性时忽略了轨迹的形状因素对轨迹相似性的影响,因此产生的匿名轨迹集合的可用性相对较低。针对这一问题,提出了一种新的轨迹相似性度量模型,在考虑轨迹的时间和空间要素的同时,加入了轨迹的形状因素,可以在多项式时间内计算定义在不同时间跨度上的轨迹的距离,能够更加准确、快速地度量轨迹之间的相似性;在此基础上,提出了一种基于轨迹位置形状相似性的隐私保护算法,最大限度地提高了聚类内部轨迹的相似性,并且使用真实的原始位置信息形成数据"面罩",满足了轨迹k-匿名,在有效地保护轨迹数据的同时,提高了轨迹数据的可用性;最后,在合成轨迹数据集和真实轨迹数据集上的实验结果表明,本算法花费更少的时间代价,具有更高的数据可用性。 In order to reduce the privacy disclosure risks when trajectory data is released, a variety of trajectories anonymity methods were proposed. However, while calculating similarity of trajectories, the existing methods ignore the impact that the shape factor of trajectory has on similarity of trajectories, and therefore the produced set of trajectory anonymity has a lower utility. To solve this problem, a trajectory similarity measure model was presented, considered not only the time and space elements of the trajectory, but also the shape factor of trajectory. It is computable in polynomial time, and can calculate the distance of trajectories not defined over the same time span. On this basis, a greedy clustering and data mask based trajectory anonymization algorithm was presented, which maximized the trajectory similarity in the clusters, and formed data "mask" which is formed by fully accurate true original locations information to meet the trajectory k-anonymity. Finally, experimental results on a synthetic data set and a real-life data set were presented; our method offer better utility and cost less time than comparable previous proposals in the literature.
出处 《通信学报》 EI CSCD 北大核心 2015年第2期144-157,共14页 Journal on Communications
基金 国家自然科学基金资助项目(61370083 61073043 61073041) 高等学校博士学科点专项科研基金资助项目(20112304110011 20122304110012) 黑龙江省自然科学基金资助项目(F200901) 哈尔滨市科技创新人才研究专项基金资助项目(2011RFXXG015)~~
关键词 时空轨迹数据 轨迹数据发布 贪婪聚类 数据面罩 轨迹匿名 spatio-tempporal trajectory data publication of trajectory data greedy clustering data mask trajectory anonymization
  • 相关文献

参考文献20

二级参考文献186

共引文献359

同被引文献156

  • 1白天,罗永亮,刘敬,常智超,王泽.基于变作业窗深度强化学习的舰面保障动态调度方法[J].船舶工程,2021,43(S02):117-123. 被引量:4
  • 2秦颖,李涛,张智勇,邹敢.一种面向工程应用的多移动搬运机器人系统结构[J].中南大学学报(自然科学版),2013,44(S2):21-27. 被引量:4
  • 3潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 4FUYU L, HUA K A, YING C. Query 1-diversity in Location-Based Services[C]//Proceedings of the Mobile Data Management: Systems, Services and Middleware, 2009 MDM '09 Tenth International Conference on, 2009: 436-442.
  • 5KHOSHGOZARAN A, SHAHABI C, SHIRANI-MEHR H. Location privacy: going beyond K-anonymity, cloaking and anonymizers[J]. Knowledge and Information Systems, 2011, 26(3): 435-465.
  • 6REBOLLO-MONEDERO D, FORNE J, Solanas A, et al. Private location-based information retrieval through user collaboration[J]. Computer Communications, 2010, 33(6): 762-774.
  • 7BONCHI F. Privacy Preserving Publication of Moving Object Data[M]. Springer-Verlag, 2009: 190-215.
  • 8BONCHI F, LAKSHMANAN L V S, WANG H. Trajectory anonymity in publishing personal mobility data[J]. SIGKDD Explor Newsl, 2011, 13(1): 30-42.
  • 9CHOW C Y, MOKBEL M F. Trajectory privacy in location-based services and data publication[J]. SIGKDD Explor Newsl, 2011, 13(1): 19-29.
  • 10BERESFORD A R, STAJANO F. Location privacy in pervasive computing[J]. Pervasive Computing, IEEE, 2003, 2(1): 46-55.

引证文献18

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部