期刊文献+

均匀线阵目标到达角估计的压缩感知方法研究 被引量:6

Analysis on the DOA estimation of uniform circular arrays based on compressive sensing
下载PDF
导出
摘要 为了缓解表面波雷达在天线阵列小型化后角度分辨率低的问题,采用压缩感知理论,提出一种小型天线阵列表面波雷达目标到达角估计的方法。将到达角估计问题转化为稀疏信号表示的重建问题。建立了稀疏信号模型,分析了应用条件,将角度和速度空间离散化以构造字典,设计了基于实时海态信息的测量矩阵,设计匹配算法完成信号重构。仿真结果表明,若满足准确重建条件,即使在小型天线阵列的情况下,也能以计算资源为代价改善方位分辨率。 In order to alleviate the serious problem of the low angle resolution after miniaturizing the antenna array of the surface wave radar, the compressed sensing method is proposed for radar antenna array angle estimation method. The sparse signals model is established, the application conditions are analyzed, and the measurement matrix is designed based on the real-time sea state information. By using the matching algorithm, the signal reconstruction is carried on. Simulation results show that if it satisfies the reconstruction condition, the azimuth resolution is improved by the method in the cost of the calculating resources.
出处 《通信学报》 EI CSCD 北大核心 2015年第2期168-174,共7页 Journal on Communications
基金 江苏省科技成果转化基金资助项目(BA2011014) 湖北省自然科学基金资助项目(2012FFB06903)~~
关键词 表面波雷达 均匀线阵 到达角 压缩感知 surface wave radar uniform circular arrays DOA compressive sensing
  • 相关文献

参考文献13

  • 1STEPHANE M,戴道清,杨力华译.信号处理的小波导引-稀疏方法[M].北京:机械工业出版社,2012.
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:713
  • 3CANDES E J, ROMBERG, J TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequencyinformation[J]. IEEE Trans Information Theory, 2006, 52(2): 489-509.
  • 4CANDES E J, ROMBERG J K,TAO T. Stable signal recovery fromincomplete and inaccurate measurements [J]. Communications on Pureand Applied Mathematics, 2006, 59(8):1207-1223.
  • 5FISHLER E, HAIMOVICH A, BLUM R, et al. Performance ofMIMO radar systems: advantages of angular diversity [A]. Signals,Systems and Computers, 2004, Conference Record of the Thirty-Eighth Asilomar Conference[C]. IEEE, 2004. 305-309.
  • 6HAIMOVICH A M,BLUM R S, CIMINI L J. MIMO radar withwidely separated antennas[J]. Signal Processing Magazine, IEEE,2008,25(1): 116-129.
  • 7CLAIR F. High Frequency Direction Finding Using StructurallyIntegrated Antennas on a Large Airborne Platform[D], USA:Department of Electrical and Computer Engineering Graduate Schoolof Engineering and Management Air Force Institute of Technology AirUniversity, 2011.
  • 8YAO Y. Colocated MIMO Radar Using Compressive Sensing[D].USA: Drexel University,2010.
  • 9YAO Y, ATHINA P, PETROPULU H V P. MIMO radar using com-pressive sampling[J]. IEEE Journal of Selected Topics in Signal Proc-ess, 2010,4(1):146-163.
  • 10GURBUZ A C, MCCLELLAN J H, CEVHER V. A compressivebeamfonning method[A].Acoustics, Speech and Signal Processing,ICASSP 2008,IEEE International Conference[C]. IEEE, 2008.2617-2620.

二级参考文献107

  • 1黄麟舒,蒋宇中,梁玉军,晏裕春.机动甚低频天线性能的矩量法结合复像法的研究[J].电波科学学报,2005,20(4):472-475. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3王运华,郭立新,吴振森.改进的二维分形模型在海面电磁散射中的应用[J].物理学报,2006,55(10):5191-5199. 被引量:28
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献720

同被引文献47

  • 1孙广俊,齐东玉,李铁成.利用返回散射系统监测海洋回波[J].电子学报,2005,33(7):1334-1337. 被引量:25
  • 2胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 3Petre S, Arye N. Music, maximum likelihood, and cramer-Rao bound [J]. IEEE Transaction on Acous- tics, Speech, and Signal Processing, 1989, 37(5). 720-741.
  • 4Simon F, Holger R. A mathematical introduction to compressive sensing[M]. Boston Birkhauser, 2013.
  • 5Fang J, Shen Y N, Li H B, et al. Super-resolution compressed sensing: an iterative reweighted algo rithm for joint parameter learning and sparse signal reeovery[J]. IEEE Signal Processing Letters, 2014, 21(6): 761- 765.
  • 6Zhao T, Arye N. Sparse direction of arrival estima- tion using co-prime arrays with off grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26- 29.
  • 7Yin J H, Chen T Q. Direction o{-arrival estimation using a sparse representation of array covariance vec- tors[J]. IEEE Transactions on Signal Processing, 2011, 59(9). 4489-4493.
  • 8Dai Jisheng, Xu Xin, Zhao Dean. Direction of-arri val estimation via real-valued sparse representation [J]. IEEE Transactions on Antennas and Wireless Propagation Letters, 2013, 12:376-379.
  • 9Jie C, Huo X M. Theoretical results on sparse rep resentations of multiple-measurement vectors [J]. IEEE Trans on Signal Processing, 2006, 54 (12) : 4634-4643.
  • 10WongKM, ZhangQT, ReillyJ P, et al. On infor- mation theoreic criteria for determining the number of signal in high resolution on array processing[J]. IEEE Transaction on Acoustics Speech and Signal Processing, 1990, 38(11): 1959-1971.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部