期刊文献+

语义不确定时态的区间集重构及近似度量方法研究

Research on Interval Sets Reconstruction and Approximation Measurement of the Temporal with Semantics Uncertainty
下载PDF
导出
摘要 为了解决语义不确定时态的近似精确度度量问题,针对不确定语义造成的时态不确定性与多样性,提出对不确定语义进行转换的思想,将其转换为邻域或区间,成为可计算问题;结合时态的粒度属性与不确定的语义,给出了不确定时态粒点和不确定时态粒区的形式化描述,不确定时态元素因此可参与运算;提出了时态区间集将时态元素在离散状态下进行重构,采用下近似和上近似的思想明确划分了不确定时态中的确定元素和不确定元素;进而给出了不确定时态粒点和不确定时态粒区的近似精确度计算方法. In order to deal with the approximation accuracy measurement of the temporal with uncertain semantics, aiming at the uncer- tainty and diversity caused by uncertain semantics, the idea of converting uncertain semantics to neighborhood or interval was proposed to render the uncertain semantics computable. By the means of integrating the temporal granularity attributes with uncertain semantics, the formal descriptions of uncertain temporal granule points and uncertain temporal granule intervals were given. The consequence is that the uncertain temporal elements could be calculated in the operations. Furthermore, the temporal interval set was introduced to re- construct temporal elements in the discrete states, and the temporal elements could be divided into the certain and the uncertain parts according to the lower and the upper approximation. Finally, the approximation accuracy measurements of uncertain temporal granule points and uncertain temporal granule intervals were elaborated.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第3期454-459,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60970044)资助 广东省自然科学基金项目(S2011040004281 S2013010014457)资助 DNSLAB资助
关键词 不确定 时态语义 粒度 区间集 近似度量 uncertainty temporal semantic granularity interval set model approximation measurement
  • 相关文献

参考文献3

二级参考文献17

  • 1王路帮,汤庸,余阳.基于BCDM的双时态关系代数[J].计算机研究与发展,2004,41(11):1949-1953. 被引量:13
  • 2叶小平,汤庸.时态变量“Now”语义及相应时态关系运算[J].软件学报,2005,16(5):838-845. 被引量:18
  • 3Pfennigschmidt S, Voisard A. Handling temporal granularity in mobile serviees [C] //Proc of IEEE Int Conf on Wireless and Mobile Computing, Networking and Communications. Piscataway, NJ: IEEE, 2009: 295-300.
  • 4Chang Yein, Huang Leewen, Chen Youcheng. An indexing strategy without recording temporal relationships for video database systems [C] //Proc of Int Symp on Computer Communication Control and Automation. Piseataway, N J: IEEE, 2010:133-136.
  • 5Fuchs E, Gruber T, Pree H, et al. Temporal data mining using shape space representations of time series [J]. Neurocomputing,2010, 74(1/2/3) : 379-393.
  • 6Shabtai A, Kanonov U, Elovlci Y. Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method [J]. The Journal of Systems Software, 2010, 83(8): 1524-1537.
  • 7Badaloni S, Falda M. Temporal-based medical diagnoses using a fuzzy temporal reasoning system [J]. Journal of Intelligent Manufacturing, 2010, 21(1): 145-153.
  • 8Alberto B, Carlo C, Gabrieie P. Formal and conceptual modeling of spatio-temporal granularities [C] //Proc of Int Database Engineering & Applications Syrup. New York:ACM, 2009: 275-283.
  • 9Mehmet A Orgun, Liu Chuchang, Abhaya C Nayak. Representation and integration of knowledge based on multiple granularity of time using temporal logic [C]//Proc of IEEE Int Conf on Information Reuse and Integration. Piseataway, NJ: IEEE, 2006:256-261.
  • 10Paul C, Kilian S. Temporal granular logic for temporal data mining [C] //Proe of IEEE Int Conf on Granular Computing. Piscataway, NJ: IEEE, 2005:417-422.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部