期刊文献+

PCA变换下的GMM-SVM话者确认研究 被引量:1

New Combination Method of GMM-SVM Based on PCA for Speaker Verification
下载PDF
导出
摘要 针对支持向量机(SVM)输入参数不能充分利用高斯混合模型(GMM)均值、方差、权重所携带的说话人信息,而导致与文本无关话者确认系统性能下降的问题,本文结合GMM的均值、方差、权重,提出一种新的、基于自适应后GMM的,SVM模型输入特征提取方法。在NIST 06语音数据库上的实验表明,本方法将等误识率(EER)从高斯混合模型-通用背景模型(GMMUBM)系统的8.49%,下降到基于离散余弦变换(DCT)变换GMM-SVM系统的4.16%,以及基于主元成分分析(PCA)GMMSVM系统的3.3%. Concerning the ineffectiveness of Support Vector Machine ( SVM) input parameters in taking full advantage of speaker in- formation carded by mean, variance, and weight of Gaussian Mixture Model (GMM ), which lead to the speaker verification perform- ance degradation problem. In this paper, a new kind of approach is proposed to extract feature for Support Vector Machine ( SVM ) from adapted Gaussian Mixture Model ( GMM) in text-independent speaker verification system. In the NIST06 speech databases, ex- perimental results show that this method reduce the Equal Error Rate (EER) from 8.49% of GMM-UBM system,down to 4. 16% of the DCT-based GMM-SVM system and 3.3% of the PCA-based GMM-SVM system.
作者 卓著 李辉
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第3期637-640,共4页 Journal of Chinese Computer Systems
关键词 主元成分分析 GMM超矢量 支持向量机 话者确认 PeA GMM supervector support vector machine speaker verification
  • 相关文献

参考文献2

二级参考文献24

  • 1Campbell W M, Campbell J P, Reynolds D A. Support Vector Machines for Speaker and Language Recognition. Computer Speech and Language, 2006, 20(2/3): 210-229
  • 2Campbell W M, Sturim D E, Reynolds D A. Support Vector Machines Using GMM Supervectors for Speaker Verification. IEEE Signal Processing Letters, 2006, 13(5) : 308 -311
  • 3Campbell W M, Sturim D E, Reynolds D A, et al. SVM Based Speaker Verification Using a GMM Supervector Kernel and Nap Variability Compensation//Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, USA, 2006,Ⅰ: 97 -100
  • 4Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 2000, 10(1/2/3) : 19 -41
  • 5Nello C, Jhon S T. Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000
  • 6Lamel L F, Rabiner L R, Rosenberg A, et al. An Improved Endpoint Detector for Isolated Word Recognition. IEEE Trans on Acoustics, Speech and Signal Processing, 1981, 29(4) : 777 -785
  • 7Xiang Bing, Chaudhari U V, Navratil J, et al. Short-Time Gaussianization for Robust Speaker Verification/! Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Orlando, USA, 2002, Ⅰ: 681 -684
  • 8Collobert R. SVMTorch: Support Vector Machines for Large-Scale Regression Problems. Journal of Machine Learning Research, 2001, 1:143-160
  • 9Matejka P, Burget L, Schwarz P, et al. STBU System for the NIST 2006 Speaker Recognition Evaluation// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, USA, 2007, Ⅳ: 221 -224
  • 10Niko B, Johan D P. Application-Independent Evaluation of Speaker Detection. Computer Speech and Language, 2006, 20 ( 2/3 ) : 230 - 275

共引文献2

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部