期刊文献+

Terahertz radiation from pentacene organic diode at room temperature

Terahertz radiation from pentacene organic diode at room temperature
原文传递
导出
摘要 We investigate terahertz radiation (T-rays) from a pentacene organic diode at room temperature. The quantum chemistry calculation for frequency-related Huang Rhys factor of pentacene is also carried out. The results demonstrate that the T-rays can come from a bending vibration of pentacene skeleton after the energy of pentacene exeiton transferring to the vibrational excited state via electron-phonon coupling. Frequency and natural bond orbital analytics of pentacene and its derivatives are performed in order to explain the result and develop new materials to get higher emission. This work provides a new way to produce T-rays with a simDle device at room temperature. We investigate terahertz radiation (T-rays) from a pentacene organic diode at room temperature. The quantum chemistry calculation for frequency-related Huang Rhys factor of pentacene is also carried out. The results demonstrate that the T-rays can come from a bending vibration of pentacene skeleton after the energy of pentacene exeiton transferring to the vibrational excited state via electron-phonon coupling. Frequency and natural bond orbital analytics of pentacene and its derivatives are performed in order to explain the result and develop new materials to get higher emission. This work provides a new way to produce T-rays with a simDle device at room temperature.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第1期66-71,共6页 中国光学快报(英文版)
基金 supported by the National Science Foundation of China(Nos.51103054 and 91233113) the Ministry of Science and Technology of China(No.2013CB834705) the PCSIRT(No.20921003)
关键词 Chemical bonds Electromagnetic wave emission ELECTRON phonon interactions Excited states PHONONS Quantum chemistry Chemical bonds Electromagnetic wave emission Electron phonon interactions Excited states Phonons Quantum chemistry
  • 相关文献

参考文献35

  • 1G. Niehues, A. L. Kaledin, J. M. Bowman, and M. Havenith, J. Phys. Chem. B 116, 10020 (2012).
  • 2L. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X. Zhang, Opt. Commun. 281, 1473 (2008).
  • 3H. Ye, Z. Gao, Z. Qin, and Q. Wang, Chin. Opt. Lett. 11, 031702 (2013).
  • 4C. Lin, I. Ho, and X. Zhang, Chin. Opt. Lett. 10, 043001 (2012).
  • 5Z. Zheng, S. Lu, Y. Li, L. Chen, and S. Wen, Chin. Opt. Left. 10, 100605 (2012).
  • 6T. Nagatsuma, H. Nishii, and T. Ikeo, Photon. Res. 2, B64 (2014).
  • 7X. H. Yuan, Y. Fang, D. C. Carroll, D. A. MacLellan, F. Du, N. Booth, M. Burza, M. Chen, R. J. Gray, Y. F. Jin, Y. T. Li, Y. Liu, D. Neely, H. Powell, G. Scott, C. G. Wahlstrom, J. Zhang, P. McKenna, and Z. M. Sheng, High Power Laser Sei. Eng. 2, 1 (2014).
  • 8J. B. Baxter and G. W. Guglietta, Anal. Chem. 83, 4342 (2011).
  • 9W. Shi, J. Xu, and X. Zhang, Chin. Opt. Lett. 1, 308 (2003).
  • 10L. F. L. Costa, J. C. S. Moraes, F. C. Cruz R. C. Viscovini and D. Pereira, Appl. Phys. B 86, 703 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部