期刊文献+

基于三因素模型的IT企业服务质量评价模型研究 被引量:2

下载PDF
导出
摘要 服务质量表征要素是评价研究的基础。本文在服务质量评价三因素模型(结果质量、互动质量和物理环境质量)的基础上,结合信息技术企业的特点,引入组织支撑质量因素,构建了适用于信息技术企业服务质量评价的四因素模型,建立了评价指标体系,采用马田系统来对指标体系进行评价,并且结合实际案例验证了模型及方法地实用性。结果表明,本文提出的质量评价模型能够有效地反映信息技术企业的服务质量,在此基础上,本文提出了企业改进服务质量的措施。 Characterization of the elements is the basis of the quality of service evaluation studies. Based on the three - factor model of service quality evaluation (quality of results, quality of interaction, quality of physical environment) and combining the characteristics of IT companies, this paper constructed a four- factor model to evaluate service quality of IT companies by means of introducing organizational support quality factors. Then the evaluation index system is established and evaluated by the method of Mahalanobis - Taguchi System. Finally the applicability of the effectiveness of the model is verified by the actual cases and data. The results show that the proposed model and evaluation method can effectively reflect the service quality of IT companies. In addition, the paper put forward some measures in terms of service quality.
出处 《企业经济》 北大核心 2015年第2期44-48,共5页 Enterprise Economy
基金 陕西省重点学科建设专项资金资助项目"供应链合作伙伴选择及绩效评价研究"(批准号:E08001 E08001) 陕西省高校哲学社会科学重点研究基地建设专项资金资助项目"IT企业服务质量评价体系研究"(批准号:DA08046)
关键词 服务质量评价 三因素模型 马田系统 信息技术企业 service quality evaluation three -factor model MTS IT companies
  • 相关文献

参考文献6

二级参考文献49

  • 1Japkowicz N. Learning from Imbalanced data sets: A comparison of various strategies [Z]. Learning from Imbalaneed Data Sets: The AAAI Workshop, 2000:10 - 15.
  • 2Maloof MA. Learning when data sets are imhalanced and when costs are unequal and unknown [ Z]. ICML-2003 Workshop on Leaming from Imbalanced Data Sets II.
  • 3Phua C, Alahakoon D, Lee V, Minority report in fraud detection : Classification of skewed data [ J]. SIGKDD Explorations, 2004, 6(1): 50 -59.
  • 4Guo H, Viktor HL. Learning from Imhalanced data sets with boosting and data generation: The databoost-IM approach [ J].SIGKDD Explorations, 2004, 6 ( 1 ) : 30 - 39.
  • 5Grzymala-Busse JW, Stefanowski J, Wilk S. A comparison of two approaches to data mining from imbalanced data [ J ]. Lecture Notes in Computer Science, 2004, 3213 : 757 - 763.
  • 6Chawla NV, Bowyer K, Hall L, Kegelmeyer W. SMOTE: synthetic minority over-sampling technique [ J ]. Journal of Artificial Intelligence Research, 2002, 16 : 231 - 357.
  • 7Wu G, Chang EY. KBA: kernel boundary alignment considering imbalanced data distribution [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (6): 786 N 794.
  • 8Wu G, Chang E. Adaptive feature-space conformal transformation for imbalanced data learning [ Z ]. Proc. 20th Int'l Conf. Machine Learning ( ICML '03 ), 2003 : 816 - 823.
  • 9Taguchi G, Jugulum R. New trends in muhivariate diagnosis [ J ]. Sankhy? : The Indian Journal of Statistics, 2000 ( 62 ) ( Series B) :233 - 248.
  • 10Taguchi G, Jugulum R. The Mahalanobis-Taguchi strategy pattern technology system [ C]. John Wiley and Sons, 2002.

共引文献188

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部