摘要
研究了一类齐次Dirichlet边界条件下带有Michaelis-Menton型收获率的捕食-食饵模型.利用分歧理论及特征值扰动理论,给出对应的平衡态方程解的先验估计,两类半平凡解的渐近稳定性,得到半平凡解附近局部分歧解存在的充分条件,将局部分歧解延拓为全局分歧解,并判定了局部分歧解的稳定性.
The predator-prey model with Michaselis-Menten type prey harvesting is investigated under the homogeneous Dirichlet boundary. With the bifurcation theory and perturbation theorem to eigenvalue,the priori estimates of steady state solutions are given. The asymptotic stability of the two kinds of semi-trivial soulations and the sufficient conditions of the existence of the local bifurcation near the seim-trivial solutions is also gained. The local bifurcation branch of steady state is extended to the global bifurcation branch. The stability of local bifurcation branch is also proved.
出处
《安徽师范大学学报(自然科学版)》
CAS
2015年第1期25-30,共6页
Journal of Anhui Normal University(Natural Science)
基金
国家自然科学基金(011271236)
关键词
捕食-食饵模型
局部分歧
全局分歧
稳定性
predator-prey model
local bifurcation
global bifurcation
stability