期刊文献+

一类带收获率的捕食模型的全局分歧和稳定性 被引量:3

Global Bifurcation and Stability of a Class of Predator-Prey Models with Prey Harvesting
下载PDF
导出
摘要 研究了一类齐次Dirichlet边界条件下带有Michaelis-Menton型收获率的捕食-食饵模型.利用分歧理论及特征值扰动理论,给出对应的平衡态方程解的先验估计,两类半平凡解的渐近稳定性,得到半平凡解附近局部分歧解存在的充分条件,将局部分歧解延拓为全局分歧解,并判定了局部分歧解的稳定性. The predator-prey model with Michaselis-Menten type prey harvesting is investigated under the homogeneous Dirichlet boundary. With the bifurcation theory and perturbation theorem to eigenvalue,the priori estimates of steady state solutions are given. The asymptotic stability of the two kinds of semi-trivial soulations and the sufficient conditions of the existence of the local bifurcation near the seim-trivial solutions is also gained. The local bifurcation branch of steady state is extended to the global bifurcation branch. The stability of local bifurcation branch is also proved.
出处 《安徽师范大学学报(自然科学版)》 CAS 2015年第1期25-30,共6页 Journal of Anhui Normal University(Natural Science)
基金 国家自然科学基金(011271236)
关键词 捕食-食饵模型 局部分歧 全局分歧 稳定性 predator-prey model local bifurcation global bifurcation stability
  • 相关文献

参考文献9

  • 1CLARK C W. Mathematical models in the economics of renewable resources[j]. SIAM Rev, 1979,21 :81 — 99.
  • 2DAS T, MUKHERJEE R N, CHAUDHARI K S. Bioeconomic harvesting of a prey-predator fishery[j]. J Biol Dyn, 2009,3:447-462.
  • 3KRISHNA S V, SRINIVASU P D N, KAYMACKCALAN B. Conservation of an ecosystem through optimal taxation[j] . Bull Math Biol,1998,60:569-584.
  • 4JI Chunyan, JIANG Daqing, SHI Ningzhong. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes withstochastic perturbation[j] . J Math Anal Appl, 2009,359 :482 — 498.
  • 5JI Chunyan, JIANG Daqing, SHI Ningzhong. A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes withstochastic perturbation[j]. J Math Anal, Appl, 2011,377(1) :435 - 440.
  • 6GUPTA R P, CHANDRA P. Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting[J]. J Math Anal Appl, 2013,398:278-295.
  • 7WU Jianhua. Global bifurication of coexistence state for the competition model in the chemostat[j]. Non-linear Anal, 2000,39(7) :817 一 835.
  • 8查淑玲,李艳玲,郭改慧.一类捕食模型椭圆方程解的稳定性[J].工程数学学报,2010,27(5):859-864. 被引量:5
  • 9SMOLLER J. Shock waves and reaction-diffusion equations[M]. New York: Spring-Verlag, 1983.

二级参考文献8

  • 1Sun G Q,Zhang G,Jin Z,et al.Predator cannibalism can give rise to regular spatial pattern in a predatorprey system[J].Nonlinear Dynamics,2009,58:75-84.
  • 2Du Y H,Lou Y.Some uniqueness and exact multiplicity results for a predator-prey model[J].Transaction of the American Mathematical Society,1997,349(6):2443-2475.
  • 3Wu J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39:817-835.
  • 4Peng R,Wang M X.Uniqueness and stability of steady-states for a predator-prey model in heterogeneous environment[J].Proceedings of the American Mathematical Society,2008,136:859-865.
  • 5Smoller J.Shock Waves and Reaction Diffusion Equations[M].New York:Springer Verlag,1999.
  • 6Wu J H,Wei G S.Coexistence states for cooperative model with diffusion[J].Computers and Mathematics with Applications,2002,43:1277-1290.
  • 7Dancer E N.On positive solutions of some pairs of differential equations[J].Transaction of the American Mathematical Society,1984,284:729-743.
  • 8郭改慧,李艳玲.带B-D反应项的捕食-食饵模型的全局分支及稳定性[J].应用数学学报,2008,31(2):220-230. 被引量:16

共引文献4

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部