期刊文献+

基于小波阀值法去白噪声的方法研究 被引量:1

Research on Removing White Noise Based on Wavelet Threshold Method
下载PDF
导出
摘要 在噪声中如何准确地检测到信号一直是信号处理领域所关心的内容,小波变换由于具有良好的时频局部化特性,能够对各种时变信号进行有效的分解,从而较好地将信号与噪声加以分离,获得满意的去噪效果。首先介绍了小波基本理论和基于传统小波分析的信号去噪原理以及几种常用的方法。在几种方法中,因小波阐值去噪法,原理简单易行,效果较好且是研究的其他几种小波分析方法去噪处理的基础,所以本文在基于MATLAB实验平台上选取实验效果较好的小波函数,在不同阀值和阀值函数的情况下对这种方法做了较为详细地方波信号去噪比较研究。 Estimating the original signals from noise has always been an important part in the field of signal process- ing. Because of it's fine time-frequency localization characteristic, wavelet transform can effectively discriminate signals from noise and achieves pretty good performance. This paper chiefly studying the theory of wavelet and principle of signal denoising based on wavelet, and then studying several denoising result, moreover it is the base of other denoising methods discussed in this paper, this paper make a comparison study of square signal denoising based on MATLAB platform, using different threshold functions and threshold value, but using one wavelet function.
出处 《电气开关》 2015年第1期74-78,108,共6页 Electric Switchgear
关键词 信号处理 小波变换 去白噪音 signal processing wavelet transform removing white noise
  • 相关文献

参考文献6

  • 1Zhang Q, et al. Wavelet network [ J ]. IEEE Trans Neural Networks, 1992,3(6) :889 -898.
  • 2Bahavik R, et al. Wave-net: a muhiresolution, hierarchical neural net- work with localized learning [ J ]. AIChE Journal, 1993,39 ( 1 ) :57 - 8 1.
  • 3Zhang J, et al. Wavelet neural network for function learning[ J ]. IEEE Transactions on Signal Processing, 1995,43 (6) : 1485 - 1497.
  • 4Zhang Q. Using wavelet network in nonparametric estimation [ J ]. IEEE Transactions on Neural Networks, 1997,8 ( 2 ) :227 - 236.
  • 5王成江,聂德鑫.放电声发射波检测中小波基的选择[J].高电压技术,2003,29(10):39-40. 被引量:8
  • 6Berkner K,Wells Jr R O. Wavelet transforms and denoising algorithm [ C ].//Signal, System & Computers, Conference Record of the Thirty-Sec- ond Asilomar Conference, 1998 : 1639 - 1643.

二级参考文献5

  • 1Coifman R, Wickenhauser V. Entropy-based algorithms for best basis selection[J]. IEEE Trans Inform Theory,1992, 8:713-718.
  • 2Carl Taswell. Near-best basis selection algorithms withn on-additive information cost function [C]//Moeness Amin. Proceedings of the IEEE International Symposiumon Time-Freuency and Time-Scale Analysis: IEEE Press, 1994:13-16.
  • 3Daubechies I. The wavelet transform, time-frequency localization and signal processing[J]. IEEE Trans Inform Theory, 1990, 36(5):961-1005.
  • 4秦叶,陈新度,冯文贤.小波基的选择与振动信号分析[J].广东工业大学学报,1997,14(4):61-64. 被引量:15
  • 5张广明,赵明涛,王裕文,谭玉山.超声缺陷检测中小波变换信号处理的参数确定[J].声学学报,2000,25(5):450-454. 被引量:6

共引文献7

同被引文献4

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部