期刊文献+

基于分层弹性运动分析的非刚体跟踪方法 被引量:2

Non-rigid Tracking Method Based on Layered Elastic Motion Analysis
下载PDF
导出
摘要 采用时–空分层的弹性运动跟踪策略,提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法.首先,基于序贯形状聚类的分段弹性运动跟踪模型,将整段图像序列分割成若干子段,并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状,获取短时局部运动变化细节.然后,通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系,进而得到整段运动的公共形状,用于表示长时运动稳定结构.通过计算公共形状与各类平均形状之间的变形关系,可以建立各聚类平均形状之间的对应关系,实现分段运动的连接.本方法的特点是不依赖先验模型、通用性好、目标的描述能力强.实验表明,本方法与现有不依赖模型的方法相比,具有更好的长时稳定性和更高的跟踪精确度. In this paper, we present a spatial-temporal layered elastic motion tracking method to estimate long-term stable structures and short-term local motions for non-rigid targets. First, the sequence is segmented into several pieces by sequential shape clustering based a piece-wise elastic motion tracking model, the correspondence among frames in the same segment and the mean shape of all clusters are calculated by piece-wise elastic motion tracking. Then, we use a Bayesian network based global search method to find the correspondence of mean shapes of adjoining clusters and extract the common shape of the entire sequence. The proposed method, which does not require prior shape models, is adaptive to and descriptive for general objects. The experiments on non-rigid targets validate both the long-term stability and the detailed accuracy of our proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2015年第2期295-303,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61273273 61003098) 高等学校博士学科点专项科研基金(2012110110034) 北京市教育委员会共建项目资助~~
关键词 分层弹性运动跟踪 序贯形状聚类 运动分段 运动连接 贝叶斯网络 Layered elastic motion tracking, sequential shape clustering, motion segmentation, motion connection,Bayesian network
  • 相关文献

参考文献28

  • 1Gavrila D M. The visual analysis of human movement: a survey. Computer Vision and Image Understanding, 1999, 73(1): 82-98.
  • 2Aggarwal J K, Cai Q. Human motion analysis: a review Computer Vision and Image Understanding, 1999, 73(3) 428-440.
  • 3Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models-their training and application. Computer Vi- sion and Image Understanding, 1995, 61(1): 38-59.
  • 4Cootes T F. Deformable object modelling and matching. In: Proceedings of the 10th Asian Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2010. 1-10.
  • 5Huang X L, Zhang S, Wang Y, Metaxas D, Saamaras D. A hierarchical framework for high resolution facial expression tracking. In: Proceedings of the 2004 Conference on Com- puter Vision and Pattern Recognition Workshop. Washing- ton D. C., USA: IEEE, 2004.22.
  • 6Aggarwal J K, Cai Q, Liao W, Sabata B. Nonrigid motion analysis: articulated and elastic motion. Computer Vision and Image Understanding, 1998, 70(2): 142-156.
  • 7Sundaram N, Brox T, Keutzer K. Dense point trajecto- ries by GPU-accelerated large displacement optical flow. In: Proceedings of the llth European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2010. 438-451.
  • 8Brox T, Malik J. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513.
  • 9Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Washington D. C., USA: IEEE, 2005. 65-72.
  • 10Liu T, Yuan Z J, Sun J, Wang J D, Zheng N N, Tang X O, Shum H Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367.

二级参考文献116

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献290

同被引文献2

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部